Spaces:
Running
Running
File size: 7,660 Bytes
f1667dd 949e6ab f1667dd c1a3d27 f1667dd c03347d f1667dd 6f570d6 f1667dd 949e6ab f1667dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
from huggingface_hub import HfFileSystem
import pandas as pd
from utils import logger
import os
from datetime import datetime
import threading
import traceback
fs = HfFileSystem()
IMPORTANT_MODELS = [
"auto",
"bert", # old but dominant (encoder only)
"gpt2", # old (decoder)
"t5", # old (encoder-decoder)
"modernbert", # (encoder only)
"vit", # old (vision) - fixed comma
"clip", # old but dominant (vision)
"detr", # objection detection, segmentation (vision)
"table-transformer", # objection detection (visioin) - maybe just detr?
"got_ocr2", # ocr (vision)
"whisper", # old but dominant (audio)
"wav2vec2", # old (audio)
"llama", # new and dominant (meta)
"gemma3", # new (google)
"qwen2", # new (Alibaba)
"mistral3", # new (Mistral) - added missing comma
"qwen2_5_vl", # new (vision)
"llava", # many models from it (vision)
"smolvlm", # new (video)
"internvl", # new (video)
"gemma3n", # new (omnimodal models)
"qwen2_5_omni", # new (omnimodal models)
]
def read_one_dataframe(json_path: str, device_label: str) -> pd.DataFrame:
df = pd.read_json(json_path, orient="index")
df.index.name = "model_name"
df[f"failed_multi_no_{device_label}"] = df["failures"].apply(lambda x: len(x["multi"]) if "multi" in x else 0)
df[f"failed_single_no_{device_label}"] = df["failures"].apply(lambda x: len(x["single"]) if "single" in x else 0)
return df
def get_distant_data() -> pd.DataFrame:
# Retrieve AMD dataframe
amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
files_amd = sorted(fs.glob(amd_src), reverse=True)
df_amd = read_one_dataframe(f"hf://{files_amd[0]}", "amd")
# Retrieve NVIDIA dataframe
nvidia_src = "hf://datasets/hf-internal-testing/transformers_daily_ci/**/ci_results_run_models_gpu/model_results.json"
files_nvidia = sorted(fs.glob(nvidia_src), reverse=True)
# NOTE: should this be removeprefix instead of lstrip?
nvidia_path = files_nvidia[0].lstrip('datasets/hf-internal-testing/transformers_daily_ci/')
nvidia_path = "https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/main/" + nvidia_path
df_nvidia = read_one_dataframe(nvidia_path, "nvidia")
# Join both dataframes
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
joined = joined[
[
"success_amd",
"success_nvidia",
"failed_multi_no_amd",
"failed_multi_no_nvidia",
"failed_single_no_amd",
"failed_single_no_nvidia",
"failures_amd",
"failures_nvidia",
"job_link_amd",
"job_link_nvidia",
]
]
joined.index = joined.index.str.replace("^models_", "", regex=True)
# Fitler out all but important models
important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
return filtered_joined
def get_sample_data() -> pd.DataFrame:
# Retrieve sample dataframes
df_amd = read_one_dataframe("sample_amd.json", "amd")
df_nvidia = read_one_dataframe("sample_nvidia.json", "nvidia")
# Join both dataframes
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
joined = joined[
[
"success_amd",
"success_nvidia",
"failed_multi_no_amd",
"failed_multi_no_nvidia",
"failed_single_no_amd",
"failed_single_no_nvidia",
"failures_amd",
"failures_nvidia",
"job_link_amd",
"job_link_nvidia",
]
]
joined.index = joined.index.str.replace("^models_", "", regex=True)
# Fitler out all but important models
important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
# Prefix all model names with "sample_"
filtered_joined.index = "sample_" + filtered_joined.index
return filtered_joined
def extract_model_data(row: pd.Series) -> tuple[dict[str, int], dict[str, int], int, int, int, int]:
"""Extract and process model data from DataFrame row."""
# Handle missing values and get counts directly from dataframe
success_amd = int(row.get('success_amd', 0)) if pd.notna(row.get('success_amd', 0)) else 0
success_nvidia = int(row.get('success_nvidia', 0)) if pd.notna(row.get('success_nvidia', 0)) else 0
failed_multi_amd = int(row.get('failed_multi_no_amd', 0)) if pd.notna(row.get('failed_multi_no_amd', 0)) else 0
failed_multi_nvidia = int(row.get('failed_multi_no_nvidia', 0)) if pd.notna(row.get('failed_multi_no_nvidia', 0)) else 0
failed_single_amd = int(row.get('failed_single_no_amd', 0)) if pd.notna(row.get('failed_single_no_amd', 0)) else 0
failed_single_nvidia = int(row.get('failed_single_no_nvidia', 0)) if pd.notna(row.get('failed_single_no_nvidia', 0)) else 0
# Calculate total failures
total_failed_amd = failed_multi_amd + failed_single_amd
total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia
# Create stats dictionaries directly from dataframe values
amd_stats = {
'passed': success_amd,
'failed': total_failed_amd,
'skipped': 0, # Not available in this dataset
'error': 0 # Not available in this dataset
}
nvidia_stats = {
'passed': success_nvidia,
'failed': total_failed_nvidia,
'skipped': 0, # Not available in this dataset
'error': 0 # Not available in this dataset
}
return amd_stats, nvidia_stats, failed_multi_amd, failed_single_amd, failed_multi_nvidia, failed_single_nvidia
class CIResults:
def __init__(self):
self.df = pd.DataFrame()
self.available_models = []
self.last_update_time = ""
def load_data(self) -> None:
"""Load data from the data source."""
# Try loading the distant data, and fall back on sample data for local tinkering
try:
logger.info("Loading distant data...")
new_df = get_distant_data()
except Exception as e:
error_msg = [
"Loading data failed:",
"-" * 120,
traceback.format_exc(),
"-" * 120,
"Falling back on sample data."
]
logger.error("\n".join(error_msg))
new_df = get_sample_data()
# Update attributes
self.df = new_df
self.available_models = new_df.index.tolist()
self.last_update_time = datetime.now().strftime('%H:%M')
# Log and return distant load status
logger.info(f"Data loaded successfully: {len(self.available_models)} models")
logger.info(f"Models: {self.available_models[:5]}{'...' if len(self.available_models) > 5 else ''}")
def schedule_data_reload(self):
"""Schedule the next data reload."""
def reload_data():
self.load_data()
# Schedule the next reload in 15 minutes (900 seconds)
timer = threading.Timer(900.0, reload_data)
timer.daemon = True # Dies when main thread dies
timer.start()
logger.info("Next data reload scheduled in 15 minutes")
# Start the first reload timer
timer = threading.Timer(900.0, reload_data)
timer.daemon = True
timer.start()
logger.info("Data auto-reload scheduled every 15 minutes")
|