File size: 7,727 Bytes
64fcb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61506bd
 
 
 
 
 
 
 
 
 
 
 
64fcb68
 
 
 
 
 
 
 
 
 
 
 
 
61506bd
 
 
 
 
64fcb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61506bd
 
 
 
 
 
 
 
3c0dd4c
61506bd
3c0dd4c
64fcb68
61506bd
 
 
64fcb68
61506bd
 
64fcb68
61506bd
 
 
 
 
 
64fcb68
 
61506bd
 
64fcb68
 
61506bd
 
64fcb68
61506bd
 
 
 
64fcb68
 
61506bd
 
64fcb68
61506bd
 
64fcb68
 
61506bd
 
64fcb68
 
61506bd
 
64fcb68
61506bd
 
 
 
64fcb68
 
61506bd
 
64fcb68
 
 
 
 
61506bd
64fcb68
 
 
 
 
 
 
 
 
 
 
3c0dd4c
64fcb68
3c0dd4c
64fcb68
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import matplotlib.pyplot as plt
import pandas as pd

def create_summary_page(df: pd.DataFrame, available_models: list[str]) -> plt.Figure:
    """Create a summary page with model names and both AMD/NVIDIA test stats bars."""
    if df.empty:
        fig, ax = plt.subplots(figsize=(16, 8), facecolor='#000000')
        ax.set_facecolor('#000000')
        ax.text(0.5, 0.5, 'No data available', 
                horizontalalignment='center', verticalalignment='center',
                transform=ax.transAxes, fontsize=20, color='#888888',
                fontfamily='monospace', weight='normal')
        ax.axis('off')
        return fig
    
    # Calculate dimensions for N-column layout
    model_count = len(available_models)
    columns = 3
    rows = (model_count + columns - 1) // columns  # Ceiling division
    
    # Figure dimensions - wider for 4 columns, height based on rows
    figure_width = 20  # Wider to accommodate 4 columns
    max_height = 12  # Maximum height in inches
    height_per_row = min(2.2, max_height / max(rows, 1))
    figure_height = min(max_height, rows * height_per_row + 2)
    
    fig, ax = plt.subplots(figsize=(figure_width, figure_height), facecolor='#000000')
    ax.set_facecolor('#000000')
    
    colors = {
        'passed': '#4CAF50',
        'failed': '#E53E3E', 
        'skipped': '#FFD54F',
        'error': '#8B0000',
        'empty': "#5B5B5B"
    }
    
    visible_model_count = 0
    max_y = 0
    
    # Column layout parameters
    column_width = 100 / columns  # Each column takes 25% of width
    bar_width = column_width * 0.8  # 80% of column width for bars
    bar_margin = column_width * 0.1  # 10% margin on each side
    
    for i, model_name in enumerate(available_models):
        if model_name not in df.index:
            continue
            
        row = df.loc[model_name]
        
        # Get values directly from dataframe
        success_amd = int(row.get('success_amd', 0)) if pd.notna(row.get('success_amd', 0)) else 0
        success_nvidia = int(row.get('success_nvidia', 0)) if pd.notna(row.get('success_nvidia', 0)) else 0
        failed_multi_amd = int(row.get('failed_multi_no_amd', 0)) if pd.notna(row.get('failed_multi_no_amd', 0)) else 0
        failed_multi_nvidia = int(row.get('failed_multi_no_nvidia', 0)) if pd.notna(row.get('failed_multi_no_nvidia', 0)) else 0
        failed_single_amd = int(row.get('failed_single_no_amd', 0)) if pd.notna(row.get('failed_single_no_amd', 0)) else 0
        failed_single_nvidia = int(row.get('failed_single_no_nvidia', 0)) if pd.notna(row.get('failed_single_no_nvidia', 0)) else 0
        
        # Calculate stats
        amd_stats = {
            'passed': success_amd,
            'failed': failed_multi_amd + failed_single_amd,
            'skipped': 0,
            'error': 0
        }
        
        nvidia_stats = {
            'passed': success_nvidia,
            'failed': failed_multi_nvidia + failed_single_nvidia,
            'skipped': 0,
            'error': 0
        }
        
        amd_total = sum(amd_stats.values())
        nvidia_total = sum(nvidia_stats.values())
        
        if amd_total == 0 and nvidia_total == 0:
            continue
            
        # Calculate position in 4-column grid
        col = visible_model_count % columns
        row = visible_model_count // columns
        
        # Calculate horizontal position for this column
        col_left = col * column_width + bar_margin
        col_center = col * column_width + column_width / 2
        
        # Calculate vertical position for this row - start from top
        vertical_spacing = height_per_row
        y_base = (0.2 + row) * vertical_spacing  # Start closer to top
        y_model_name = y_base    # Model name above AMD bar
        y_amd_bar = y_base + vertical_spacing * 0.25       # AMD bar
        y_nvidia_bar = y_base + vertical_spacing * 0.54    # NVIDIA bar
        max_y = max(max_y, y_nvidia_bar + vertical_spacing * 0.3)
        
        # Model name centered above the bars in this column
        ax.text(col_center, y_model_name, model_name.lower(), 
               ha='center', va='center', color='#FFFFFF', 
               fontsize=16, fontfamily='monospace', fontweight='bold')
        
        # AMD label and bar in this column
        bar_height = min(0.4, vertical_spacing * 0.22)  # Adjust bar height based on spacing
        label_x = col_left - 1  # Label position to the left of the bar
        ax.text(label_x, y_amd_bar, "amd", ha='right', va='center', color='#CCCCCC', fontsize=14, fontfamily='monospace', fontweight='normal')
        
        if amd_total > 0:           
            # AMD bar starts at column left position
            left = col_left
            for category in ['passed', 'failed', 'skipped', 'error']:
                if amd_stats[category] > 0:
                    width = amd_stats[category] / amd_total * bar_width
                    ax.barh(y_amd_bar, width, left=left, height=bar_height, 
                           color=colors[category], alpha=0.9)
                    # if width > 2:  # Smaller threshold for text display
                    #     ax.text(left + width/2, y_amd_bar, str(amd_stats[category]), 
                    #            ha='center', va='center', color='black', 
                    #            fontweight='bold', fontsize=10, fontfamily='monospace')
                    left += width
        else:
            ax.barh(y_amd_bar, bar_width, left=col_left, height=bar_height, color=colors['empty'], alpha=0.9)
            # ax.text(col_center, y_amd_bar, "No data", ha='center', va='center', color='black', fontweight='bold', fontsize=10, fontfamily='monospace')
        
        # NVIDIA label and bar in this column
        ax.text(label_x, y_nvidia_bar, "nvidia", ha='right', va='center', color='#CCCCCC', fontsize=14, fontfamily='monospace', fontweight='normal')

        if nvidia_total > 0:            
            # NVIDIA bar starts at column left position
            left = col_left
            for category in ['passed', 'failed', 'skipped', 'error']:
                if nvidia_stats[category] > 0:
                    width = nvidia_stats[category] / nvidia_total * bar_width
                    ax.barh(y_nvidia_bar, width, left=left, height=bar_height, 
                           color=colors[category], alpha=0.9)
                    # if width > 2:  # Smaller threshold for text display
                    #     ax.text(left + width/2, y_nvidia_bar, str(nvidia_stats[category]), 
                    #            ha='center', va='center', color='black', 
                    #            fontweight='bold', fontsize=10, fontfamily='monospace')
                    left += width
        else:
            ax.barh(y_nvidia_bar, bar_width, left=col_left, height=bar_height, color=colors['empty'], alpha=0.9)
            # ax.text(col_center, y_nvidia_bar, "No data", ha='center', va='center', color='black', fontweight='bold', fontsize=10, fontfamily='monospace')
        
        # Increment counter for next visible model
        visible_model_count += 1
    
    # Style the axes to be completely invisible and span full width
    ax.set_xlim(-5, 105)  # Slightly wider to accommodate labels
    ax.set_ylim(0, max_y)
    ax.set_xlabel('')
    ax.set_ylabel('')
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.set_xticks([])
    ax.set_yticks([])
    ax.yaxis.set_inverted(True)
    
    # Remove all margins to make figure stick to top
    plt.tight_layout()
    plt.subplots_adjust(left=0.02, right=0.98, top=1.0, bottom=0.02)
    
    return fig