tcid / app.py
ror's picture
ror HF Staff
Homing into right sidebar
a899859
raw
history blame
20 kB
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import gradio as gr
import threading
from data import CIResults
from utils import logger, generate_underlined_line
from summary_page import create_summary_page
# Configure matplotlib to prevent memory warnings and set dark background
matplotlib.rcParams['figure.facecolor'] = '#000000'
matplotlib.rcParams['axes.facecolor'] = '#000000'
matplotlib.rcParams['savefig.facecolor'] = '#000000'
plt.ioff() # Turn off interactive mode to prevent figure accumulation
# Load data once at startup
Ci_results = CIResults()
Ci_results.load_data()
# Start the auto-reload scheduler
Ci_results.schedule_data_reload()
def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]:
"""Draws a pie chart of model's passed, failed, skipped, and error stats."""
if Ci_results.df.empty or model_name not in Ci_results.df.index:
# Handle case where model data is not available
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
ax.set_facecolor('#000000')
ax.text(0.5, 0.5, f'No data available for {model_name}',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=16, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
return fig, "No data available", "No data available"
row = Ci_results.df.loc[model_name]
# Handle missing values and get counts directly from dataframe
success_amd = int(row.get('success_amd', 0)) if pd.notna(row.get('success_amd', 0)) else 0
success_nvidia = int(row.get('success_nvidia', 0)) if pd.notna(row.get('success_nvidia', 0)) else 0
failed_multi_amd = int(row.get('failed_multi_no_amd', 0)) if pd.notna(row.get('failed_multi_no_amd', 0)) else 0
failed_multi_nvidia = int(row.get('failed_multi_no_nvidia', 0)) if pd.notna(row.get('failed_multi_no_nvidia', 0)) else 0
failed_single_amd = int(row.get('failed_single_no_amd', 0)) if pd.notna(row.get('failed_single_no_amd', 0)) else 0
failed_single_nvidia = int(row.get('failed_single_no_nvidia', 0)) if pd.notna(row.get('failed_single_no_nvidia', 0)) else 0
# Calculate total failures
total_failed_amd = failed_multi_amd + failed_single_amd
total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia
# Softer color palette - less pastel, more vibrant
colors = {
'passed': '#4CAF50', # Medium green
'failed': '#E53E3E', # More red
'skipped': '#FFD54F', # Medium yellow
'error': '#8B0000' # Dark red
}
# Create stats dictionaries directly from dataframe values
amd_stats = {
'passed': success_amd,
'failed': total_failed_amd,
'skipped': 0, # Not available in this dataset
'error': 0 # Not available in this dataset
}
nvidia_stats = {
'passed': success_nvidia,
'failed': total_failed_nvidia,
'skipped': 0, # Not available in this dataset
'error': 0 # Not available in this dataset
}
# Filter out categories with 0 values for cleaner visualization
amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0}
if not amd_filtered and not nvidia_filtered:
# Handle case where all values are 0 - minimal empty state
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
ax.set_facecolor('#000000')
ax.text(0.5, 0.5, 'No test results available',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=16, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
return fig, "", ""
# Create figure with two subplots side by side with padding
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 9), facecolor='#000000')
ax1.set_facecolor('#000000')
ax2.set_facecolor('#000000')
def create_pie_chart(ax, device_label, filtered_stats):
if not filtered_stats:
ax.text(0.5, 0.5, 'No test results',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=14, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_title(device_label,
fontsize=28, weight='bold', pad=2, color='#FFFFFF',
fontfamily='monospace')
ax.axis('off')
return
chart_colors = [colors[category] for category in filtered_stats.keys()]
# Create minimal pie chart - full pie, no donut effect
wedges, texts, autotexts = ax.pie(
filtered_stats.values(),
labels=[label.lower() for label in filtered_stats.keys()], # Lowercase for minimal look
colors=chart_colors,
autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}',
startangle=90,
explode=None, # No separation
shadow=False,
wedgeprops=dict(edgecolor='#1a1a1a', linewidth=0.5), # Minimal borders
textprops={'fontsize': 12, 'weight': 'normal', 'color': '#CCCCCC', 'fontfamily': 'monospace'}
)
# Enhanced percentage text styling for better readability
for autotext in autotexts:
autotext.set_color('#000000') # Black text for better contrast
autotext.set_weight('bold')
autotext.set_fontsize(14)
autotext.set_fontfamily('monospace')
# Minimal category labels
for text in texts:
text.set_color('#AAAAAA')
text.set_weight('normal')
text.set_fontsize(13)
text.set_fontfamily('monospace')
# Device label closer to chart and bigger
ax.set_title(device_label,
fontsize=28, weight='normal', pad=2, color='#FFFFFF',
fontfamily='monospace')
# Create both pie charts with device labels
create_pie_chart(ax1, "amd", amd_filtered)
create_pie_chart(ax2, "nvidia", nvidia_filtered)
# Add subtle separation line between charts - stops at device labels level
line_x = 0.5
fig.add_artist(plt.Line2D([line_x, line_x], [0.0, 0.85],
color='#333333', linewidth=1, alpha=0.5,
transform=fig.transFigure))
# Add central shared title for model name
fig.suptitle(f'{model_name.lower()}',
fontsize=32, weight='bold', color='#CCCCCC',
fontfamily='monospace', y=1)
# Clean layout with padding and space for central title
plt.tight_layout()
plt.subplots_adjust(top=0.85, wspace=0.4) # Added wspace for padding between charts
# Generate failure info directly from dataframe
failures_amd = row.get('failures_amd', {})
failures_nvidia = row.get('failures_nvidia', {})
amd_failed_info = extract_failure_info(failures_amd, 'AMD', failed_multi_amd, failed_single_amd)
nvidia_failed_info = extract_failure_info(failures_nvidia, 'NVIDIA', failed_multi_nvidia, failed_single_nvidia)
return fig, amd_failed_info, nvidia_failed_info
def extract_failure_info(failures_obj, device: str, multi_count: int, single_count: int) -> str:
"""Extract failure information from failures object."""
if (not failures_obj or pd.isna(failures_obj)) and multi_count == 0 and single_count == 0:
return f"No failures on {device}"
info_lines = []
# Add counts summary
if multi_count > 0 or single_count > 0:
info_lines.append(generate_underlined_line(f"Failure Summary for {device}:"))
if multi_count > 0:
info_lines.append(f"Multi GPU failures: {multi_count}")
if single_count > 0:
info_lines.append(f"Single GPU failures: {single_count}")
info_lines.append("")
# Try to extract detailed failure information
try:
if isinstance(failures_obj, dict):
# Check for multi and single failure categories
if 'multi' in failures_obj and failures_obj['multi']:
info_lines.append(generate_underlined_line(f"Multi GPU failure details:"))
if isinstance(failures_obj['multi'], list):
# Handle list of failures (could be strings or dicts)
for i, failure in enumerate(failures_obj['multi'][:10]): # Limit to first 10
if isinstance(failure, dict):
# Extract meaningful info from dict (e.g., test name, line, etc.)
failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure))))
info_lines.append(f" {i+1}. {failure_str}")
else:
info_lines.append(f" {i+1}. {str(failure)}")
if len(failures_obj['multi']) > 10:
info_lines.append(f"... and {len(failures_obj['multi']) - 10} more")
else:
info_lines.append(str(failures_obj['multi']))
info_lines.append("")
if 'single' in failures_obj and failures_obj['single']:
info_lines.append(generate_underlined_line(f"Single GPU failure details:"))
if isinstance(failures_obj['single'], list):
# Handle list of failures (could be strings or dicts)
for i, failure in enumerate(failures_obj['single'][:10]): # Limit to first 10
if isinstance(failure, dict):
# Extract meaningful info from dict (e.g., test name, line, etc.)
failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure))))
info_lines.append(f" {i+1}. {failure_str}")
else:
info_lines.append(f" {i+1}. {str(failure)}")
if len(failures_obj['single']) > 10:
info_lines.append(f"... and {len(failures_obj['single']) - 10} more")
else:
info_lines.append(str(failures_obj['single']))
return "\n".join(info_lines) if info_lines else f"No detailed failure info for {device}"
except Exception as e:
if multi_count > 0 or single_count > 0:
return f"Failures detected on {device} (Multi: {multi_count}, Single: {single_count})\nDetails unavailable: {str(e)}"
return f"Error processing failure info for {device}: {str(e)}"
# Load CSS from external file
def load_css():
try:
with open("styles.css", "r") as f:
return f.read()
except FileNotFoundError:
logger.warning("styles.css not found, using minimal default styles")
return "body { background: #000; color: #fff; }"
# Create the Gradio interface with sidebar and dark theme
with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
with gr.Row():
# Sidebar for model selection
with gr.Column(scale=1, elem_classes=["sidebar"]):
gr.Markdown("# πŸ€– TCID", elem_classes=["sidebar-title"])
# Description with integrated last update time
if Ci_results.last_update_time:
description_text = f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (last updated: {Ci_results.last_update_time})*\n"
else:
description_text = f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (loading...)*\n"
description_display = gr.Markdown(description_text, elem_classes=["sidebar-description"])
# Summary button at the top
summary_button = gr.Button(
"summary\nπŸ“Š",
variant="primary",
size="lg",
elem_classes=["summary-button"]
)
# Model selection header
gr.Markdown(f"**Select Model ({len(Ci_results.available_models)}):**", elem_classes=["model-header"])
# Scrollable container for model buttons
with gr.Column(scale=1, elem_classes=["model-container"]):
# Create individual buttons for each model
model_buttons = []
model_choices = [model.lower() for model in Ci_results.available_models] if Ci_results.available_models else ["auto", "bert", "clip", "llama"]
for model_name in model_choices:
btn = gr.Button(
model_name,
variant="secondary",
size="sm",
elem_classes=["model-button"]
)
model_buttons.append(btn)
# CI job links at bottom of sidebar
ci_links_display = gr.Markdown("πŸ”— **CI Jobs:** *Loading...*", elem_classes=["sidebar-links"])
# Main content area
with gr.Column(scale=4, elem_classes=["main-content"]):
# Summary display (default view)
summary_display = gr.Plot(
value=create_summary_page(Ci_results.df, Ci_results.available_models),
label="",
format="png",
elem_classes=["plot-container"],
visible=True
)
# Detailed view components (hidden by default)
with gr.Column(visible=False, elem_classes=["detail-view"]) as detail_view:
# Create the plot output
plot_output = gr.Plot(
label="",
format="png",
elem_classes=["plot-container"]
)
# Create two separate failed tests displays in a row layout
with gr.Row():
with gr.Column(scale=1):
amd_failed_tests_output = gr.Textbox(
value="",
lines=8,
max_lines=8,
interactive=False,
container=False,
elem_classes=["failed-tests"]
)
with gr.Column(scale=1):
nvidia_failed_tests_output = gr.Textbox(
value="",
lines=8,
max_lines=8,
interactive=False,
container=False,
elem_classes=["failed-tests"]
)
# Set up click handlers for model buttons
for i, btn in enumerate(model_buttons):
model_name = model_choices[i]
btn.click(
fn=lambda selected_model=model_name: plot_model_stats(selected_model),
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
).then(
fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
outputs=[summary_display, detail_view]
)
# Summary button click handler
def show_summary_and_update_links():
"""Show summary page and update CI links."""
return create_summary_page(Ci_results.df, Ci_results.available_models), get_description_text(), get_ci_links()
summary_button.click(
fn=show_summary_and_update_links,
outputs=[summary_display, description_display, ci_links_display]
).then(
fn=lambda: [gr.update(visible=True), gr.update(visible=False)],
outputs=[summary_display, detail_view]
)
# Function to get current description text
def get_description_text():
"""Get description text with integrated last update time."""
if Ci_results.last_update_time:
return f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (last updated: {Ci_results.last_update_time})*\n"
else:
return f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (loading...)*\n"
# Function to get CI job links
def get_ci_links():
"""Get CI job links from the most recent data."""
try:
# Check if df exists and is not empty
if Ci_results.df is None or Ci_results.df.empty:
return "πŸ”— **CI Jobs:** *Loading...*"
# Get links from any available model (they should be the same for all models in a run)
amd_multi_link = None
amd_single_link = None
nvidia_multi_link = None
nvidia_single_link = None
for model_name in Ci_results.df.index:
row = Ci_results.df.loc[model_name]
# Extract AMD links
if pd.notna(row.get('job_link_amd')) and (not amd_multi_link or not amd_single_link):
amd_link_raw = row.get('job_link_amd')
if isinstance(amd_link_raw, dict):
if 'multi' in amd_link_raw and not amd_multi_link:
amd_multi_link = amd_link_raw['multi']
if 'single' in amd_link_raw and not amd_single_link:
amd_single_link = amd_link_raw['single']
# Extract NVIDIA links
if pd.notna(row.get('job_link_nvidia')) and (not nvidia_multi_link or not nvidia_single_link):
nvidia_link_raw = row.get('job_link_nvidia')
if isinstance(nvidia_link_raw, dict):
if 'multi' in nvidia_link_raw and not nvidia_multi_link:
nvidia_multi_link = nvidia_link_raw['multi']
if 'single' in nvidia_link_raw and not nvidia_single_link:
nvidia_single_link = nvidia_link_raw['single']
# Break if we have all links
if amd_multi_link and amd_single_link and nvidia_multi_link and nvidia_single_link:
break
links_md = "πŸ”— **CI Jobs:**\n\n"
# AMD links
if amd_multi_link or amd_single_link:
links_md += "**AMD:**\n"
if amd_multi_link:
links_md += f"β€’ [Multi GPU]({amd_multi_link})\n"
if amd_single_link:
links_md += f"β€’ [Single GPU]({amd_single_link})\n"
links_md += "\n"
# NVIDIA links
if nvidia_multi_link or nvidia_single_link:
links_md += "**NVIDIA:**\n"
if nvidia_multi_link:
links_md += f"β€’ [Multi GPU]({nvidia_multi_link})\n"
if nvidia_single_link:
links_md += f"β€’ [Single GPU]({nvidia_single_link})\n"
if not (amd_multi_link or amd_single_link or nvidia_multi_link or nvidia_single_link):
links_md += "*No links available*"
return links_md
except Exception as e:
logger.error(f"getting CI links: {e}")
return "πŸ”— **CI Jobs:** *Error loading links*"
# Auto-update CI links when the interface loads
demo.load(
fn=get_ci_links,
outputs=[ci_links_display]
)
if __name__ == "__main__":
demo.launch()