Spaces:
Running
Running
Ákos Hadnagy
commited on
Commit
·
2018d03
1
Parent(s):
a8d2652
Hook it up to the data-source
Browse files- .gitignore +1 -0
- CLAUDE.md +0 -90
- app.py +356 -665
- data.py +86 -0
- styles.css +589 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
CLAUDE.md
DELETED
@@ -1,90 +0,0 @@
|
|
1 |
-
# CLAUDE.md
|
2 |
-
|
3 |
-
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
4 |
-
|
5 |
-
## Project Overview
|
6 |
-
|
7 |
-
This is a **Test Results Dashboard** project (Tcid) that provides interactive visualization of AI model testing results. The project consists of two main applications:
|
8 |
-
|
9 |
-
1. **Gradio Dashboard** (`app.py`) - Python-based web dashboard using Gradio and Matplotlib
|
10 |
-
2. **HTML Dashboard** (`index.html`) - Standalone HTML dashboard with Chart.js visualization
|
11 |
-
|
12 |
-
Both dashboards display test results for AI models including metrics like passed, failed, skipped, and error counts.
|
13 |
-
|
14 |
-
## Architecture
|
15 |
-
|
16 |
-
### Core Components
|
17 |
-
|
18 |
-
- **app.py**: Main Gradio application with dark theme UI, sidebar navigation, and matplotlib pie charts
|
19 |
-
- **model_stats.json**: JSON data file containing test results for different AI models
|
20 |
-
- **index.html**: Self-contained HTML dashboard with device-specific performance comparison (NVIDIA vs AMD)
|
21 |
-
- **requirements.txt**: Python dependencies (currently only matplotlib>=3.8)
|
22 |
-
|
23 |
-
### Data Structure
|
24 |
-
|
25 |
-
Model statistics follow this format:
|
26 |
-
```json
|
27 |
-
{
|
28 |
-
"model_name": {
|
29 |
-
"passed": int,
|
30 |
-
"failed": int,
|
31 |
-
"skipped": int,
|
32 |
-
"error": int
|
33 |
-
}
|
34 |
-
}
|
35 |
-
```
|
36 |
-
|
37 |
-
The HTML dashboard extends this with device-specific data for NVIDIA and AMD performance comparisons.
|
38 |
-
|
39 |
-
## Development Commands
|
40 |
-
|
41 |
-
### Environment Setup
|
42 |
-
```bash
|
43 |
-
# Activate virtual environment
|
44 |
-
source venv_tci/bin/activate
|
45 |
-
|
46 |
-
# Install dependencies
|
47 |
-
pip install -r requirements.txt
|
48 |
-
```
|
49 |
-
|
50 |
-
### Running the Applications
|
51 |
-
|
52 |
-
**Gradio Dashboard:**
|
53 |
-
```bash
|
54 |
-
python app.py
|
55 |
-
```
|
56 |
-
|
57 |
-
**HTML Dashboard:**
|
58 |
-
Open `index.html` directly in a web browser - no server required.
|
59 |
-
|
60 |
-
### Python Environment
|
61 |
-
- Python 3.12.4
|
62 |
-
- Virtual environment located at `venv_tci/`
|
63 |
-
- Dependencies managed via `requirements.txt`
|
64 |
-
|
65 |
-
## Key Implementation Details
|
66 |
-
|
67 |
-
### Gradio Application (app.py)
|
68 |
-
- Uses `MODELS` dictionary for hardcoded test data (lines 8-12)
|
69 |
-
- `plot_model_stats()` function generates matplotlib pie charts with dark theme
|
70 |
-
- Custom CSS for dark theme styling (lines 77-133)
|
71 |
-
- Sidebar navigation with model selection buttons
|
72 |
-
- Real-time chart updates on model selection
|
73 |
-
|
74 |
-
### Data Management
|
75 |
-
- Model data is currently hardcoded in `app.py`
|
76 |
-
- External JSON data file `model_stats.json` exists but is not integrated
|
77 |
-
- HTML dashboard has embedded JavaScript data
|
78 |
-
|
79 |
-
### Styling
|
80 |
-
- Dark theme with black backgrounds (#000000)
|
81 |
-
- Custom color scheme: Green (passed), Red (failed), Orange (skipped), Purple (error)
|
82 |
-
- Responsive design with sidebar layout
|
83 |
-
|
84 |
-
## Hugging Face Spaces Configuration
|
85 |
-
|
86 |
-
This project is configured as a Hugging Face Space:
|
87 |
-
- SDK: Gradio 5.38.0
|
88 |
-
- App file: app.py
|
89 |
-
- Space emoji: 👁
|
90 |
-
- Color theme: indigo to pink gradient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
import matplotlib.pyplot as plt
|
2 |
import matplotlib
|
3 |
import numpy as np
|
4 |
-
|
5 |
import gradio as gr
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Configure matplotlib to prevent memory warnings and set dark background
|
8 |
matplotlib.rcParams['figure.max_open_warning'] = 0
|
@@ -11,129 +15,87 @@ matplotlib.rcParams['axes.facecolor'] = '#000000'
|
|
11 |
matplotlib.rcParams['savefig.facecolor'] = '#000000'
|
12 |
plt.ioff() # Turn off interactive mode to prevent figure accumulation
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
"
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
"error": []
|
23 |
-
},
|
24 |
-
"nvidia": {
|
25 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
|
26 |
-
"failed": ["network_timeout", "distributed"],
|
27 |
-
"skipped": ["multi_gpu"],
|
28 |
-
"error": []
|
29 |
-
}
|
30 |
-
},
|
31 |
-
"gemma3": {
|
32 |
-
"amd": {
|
33 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch", "env_vars", "secrets_mgmt", "tls_cert", "encryption", "compression", "serialization", "deserialization", "validation"],
|
34 |
-
"failed": ["gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "distributed", "multi_gpu", "opencl_init", "driver_conflict", "memory_bandwidth", "compute_units", "rocm_version", "hip_compile", "kernel_launch", "buffer_transfer", "atomic_ops", "wavefront_sync"],
|
35 |
-
"skipped": ["perf_test", "stress_test", "load_test", "endurance", "benchmark", "profiling", "memory_leak", "cpu_usage", "disk_io", "network_bw", "latency", "throughput"],
|
36 |
-
"error": []
|
37 |
-
},
|
38 |
-
"nvidia": {
|
39 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch", "env_vars", "secrets_mgmt", "tls_cert", "encryption", "compression", "serialization", "deserialization", "validation", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
|
40 |
-
"failed": ["distributed", "multi_gpu", "cuda_version", "nvcc_compile", "stream_sync", "device_reset", "peer_access", "unified_memory", "texture_bind", "surface_write", "constant_mem", "shared_mem"],
|
41 |
-
"skipped": ["perf_test", "stress_test", "load_test", "endurance", "benchmark", "profiling", "memory_leak", "cpu_usage", "disk_io", "network_bw"],
|
42 |
-
"error": []
|
43 |
-
}
|
44 |
-
},
|
45 |
-
"csm": {
|
46 |
-
"amd": {
|
47 |
-
"passed": [],
|
48 |
-
"failed": [],
|
49 |
-
"skipped": [],
|
50 |
-
"error": ["system_crash"]
|
51 |
-
},
|
52 |
-
"nvidia": {
|
53 |
-
"passed": [],
|
54 |
-
"failed": [],
|
55 |
-
"skipped": [],
|
56 |
-
"error": ["system_crash"]
|
57 |
-
}
|
58 |
-
},
|
59 |
-
"claude": {
|
60 |
-
"amd": {
|
61 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break"],
|
62 |
-
"failed": ["gpu_accel", "cuda_ops", "ml_inference", "distributed", "multi_gpu", "opencl_init", "driver_conflict"],
|
63 |
-
"skipped": ["tensor_ops", "perf_test", "stress_test", "load_test", "endurance", "benchmark"],
|
64 |
-
"error": ["memory_bandwidth"]
|
65 |
-
},
|
66 |
-
"nvidia": {
|
67 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
|
68 |
-
"failed": ["distributed", "multi_gpu", "cuda_version", "nvcc_compile"],
|
69 |
-
"skipped": ["perf_test", "stress_test", "load_test", "endurance"],
|
70 |
-
"error": []
|
71 |
-
}
|
72 |
-
},
|
73 |
-
"mistral": {
|
74 |
-
"amd": {
|
75 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring"],
|
76 |
-
"failed": ["gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "distributed", "multi_gpu", "opencl_init", "driver_conflict", "memory_bandwidth", "compute_units", "rocm_version", "hip_compile", "kernel_launch"],
|
77 |
-
"skipped": ["security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break"],
|
78 |
-
"error": ["buffer_transfer", "atomic_ops"]
|
79 |
-
},
|
80 |
-
"nvidia": {
|
81 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "security_scan"],
|
82 |
-
"failed": ["distributed", "multi_gpu", "cuda_version", "nvcc_compile", "stream_sync", "device_reset"],
|
83 |
-
"skipped": ["password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter"],
|
84 |
-
"error": ["peer_access"]
|
85 |
-
}
|
86 |
-
},
|
87 |
-
"phi": {
|
88 |
-
"amd": {
|
89 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection"],
|
90 |
-
"failed": ["gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "distributed", "multi_gpu", "opencl_init", "driver_conflict", "memory_bandwidth"],
|
91 |
-
"skipped": ["rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown"],
|
92 |
-
"error": []
|
93 |
-
},
|
94 |
-
"nvidia": {
|
95 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "rate_limiter"],
|
96 |
-
"failed": ["distributed", "multi_gpu", "cuda_version"],
|
97 |
-
"skipped": ["load_balance", "circuit_break", "retry_logic", "timeout_handle"],
|
98 |
-
"error": []
|
99 |
-
}
|
100 |
-
},
|
101 |
-
"qwen": {
|
102 |
-
"amd": {
|
103 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety"],
|
104 |
-
"failed": ["backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "distributed", "multi_gpu"],
|
105 |
-
"skipped": ["retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch"],
|
106 |
-
"error": ["env_vars", "secrets_mgmt", "tls_cert"]
|
107 |
-
},
|
108 |
-
"nvidia": {
|
109 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
|
110 |
-
"failed": ["log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "distributed", "multi_gpu", "cuda_version", "nvcc_compile"],
|
111 |
-
"skipped": ["retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload"],
|
112 |
-
"error": ["config_watch", "env_vars"]
|
113 |
-
}
|
114 |
-
},
|
115 |
-
"deepseek": {
|
116 |
-
"amd": {
|
117 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch", "env_vars", "secrets_mgmt", "tls_cert", "encryption", "compression"],
|
118 |
-
"failed": ["gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "opencl_init", "driver_conflict", "memory_bandwidth", "compute_units"],
|
119 |
-
"skipped": ["distributed", "multi_gpu", "serialization", "deserialization", "validation"],
|
120 |
-
"error": []
|
121 |
-
},
|
122 |
-
"nvidia": {
|
123 |
-
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch", "env_vars", "secrets_mgmt", "tls_cert", "encryption", "compression", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
|
124 |
-
"failed": ["distributed", "multi_gpu"],
|
125 |
-
"skipped": ["serialization", "deserialization", "validation"],
|
126 |
-
"error": []
|
127 |
-
}
|
128 |
-
}
|
129 |
-
}
|
130 |
|
131 |
def generate_underlined_line(text: str) -> str:
|
132 |
return text + "\n" + "─" * len(text) + "\n"
|
133 |
|
134 |
def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]:
|
135 |
"""Draws a pie chart of model's passed, failed, skipped, and error stats."""
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
# Softer color palette - less pastel, more vibrant
|
139 |
colors = {
|
@@ -143,9 +105,20 @@ def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]:
|
|
143 |
'error': '#8B0000' # Dark red
|
144 |
}
|
145 |
|
146 |
-
#
|
147 |
-
amd_stats = {
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
# Filter out categories with 0 values for cleaner visualization
|
151 |
amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
|
@@ -234,68 +207,88 @@ def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]:
|
|
234 |
plt.tight_layout()
|
235 |
plt.subplots_adjust(top=0.85, wspace=0.4) # Added wspace for padding between charts
|
236 |
|
237 |
-
# Generate
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
nvidia_exclusive = nvidia_failed - amd_failed
|
244 |
-
common_failures = amd_failed & nvidia_failed
|
245 |
-
|
246 |
-
# Build AMD info
|
247 |
-
amd_failed_info = ""
|
248 |
-
if not amd_exclusive and not common_failures:
|
249 |
-
msg = "Error(s) detected" if model_stats["amd"]["error"] else "No failures"
|
250 |
-
amd_failed_info += generate_underlined_line(msg)
|
251 |
-
if amd_exclusive:
|
252 |
-
amd_failed_info += generate_underlined_line("Failures on AMD (exclusive):")
|
253 |
-
amd_failed_info += "\n".join(sorted(amd_exclusive))
|
254 |
-
amd_failed_info += "\n\n" if common_failures else ""
|
255 |
-
if common_failures:
|
256 |
-
amd_failed_info += generate_underlined_line("Failures on AMD (common):")
|
257 |
-
amd_failed_info += "\n".join(sorted(common_failures))
|
258 |
-
|
259 |
-
# Build NVIDIA info
|
260 |
-
nvidia_failed_info = ""
|
261 |
-
if not nvidia_exclusive and not common_failures:
|
262 |
-
msg = "Error(s) detected" if model_stats["nvidia"]["error"] else "No failures"
|
263 |
-
nvidia_failed_info += generate_underlined_line(msg)
|
264 |
-
if nvidia_exclusive:
|
265 |
-
nvidia_failed_info += generate_underlined_line("Failures on NVIDIA (exclusive):")
|
266 |
-
nvidia_failed_info += "\n".join(sorted(nvidia_exclusive))
|
267 |
-
nvidia_failed_info += "\n\n" if common_failures else ""
|
268 |
-
if common_failures:
|
269 |
-
nvidia_failed_info += generate_underlined_line("Failures on NVIDIA (common):")
|
270 |
-
nvidia_failed_info += "\n".join(sorted(common_failures))
|
271 |
|
272 |
return fig, amd_failed_info, nvidia_failed_info
|
273 |
|
274 |
-
def
|
275 |
-
"""
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
def create_summary_page() -> plt.Figure:
|
297 |
"""Create a summary page with model names and both AMD/NVIDIA test stats bars."""
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
ax.set_facecolor('#000000')
|
300 |
|
301 |
colors = {
|
@@ -307,11 +300,37 @@ def create_summary_page() -> plt.Figure:
|
|
307 |
|
308 |
visible_model_count = 0
|
309 |
max_y = 0
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
amd_total = sum(amd_stats.values())
|
314 |
-
nvidia_stats = {k: len(v) for k, v in model_data['nvidia'].items()}
|
315 |
nvidia_total = sum(nvidia_stats.values())
|
316 |
|
317 |
if amd_total == 0 and nvidia_total == 0:
|
@@ -391,471 +410,41 @@ def create_summary_page() -> plt.Figure:
|
|
391 |
|
392 |
return fig
|
393 |
|
394 |
-
#
|
395 |
-
|
396 |
-
|
397 |
-
.
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
overflow: hidden !important;
|
403 |
-
}
|
404 |
-
|
405 |
-
/* Remove borders from all components */
|
406 |
-
.gr-box, .gr-form, .gr-panel {
|
407 |
-
border: none !important;
|
408 |
-
background-color: #000000 !important;
|
409 |
-
}
|
410 |
-
|
411 |
-
/* Sidebar styling */
|
412 |
-
.sidebar {
|
413 |
-
background: linear-gradient(145deg, #111111, #1a1a1a) !important;
|
414 |
-
border: none !important;
|
415 |
-
padding: 25px !important;
|
416 |
-
box-shadow: inset 2px 2px 5px rgba(0, 0, 0, 0.3) !important;
|
417 |
-
margin: 0 !important;
|
418 |
-
height: 100vh !important;
|
419 |
-
position: fixed !important;
|
420 |
-
left: 0 !important;
|
421 |
-
top: 0 !important;
|
422 |
-
width: 300px !important;
|
423 |
-
box-sizing: border-box !important;
|
424 |
-
overflow-y: auto !important;
|
425 |
-
scrollbar-width: thin !important;
|
426 |
-
scrollbar-color: #333333 #111111 !important;
|
427 |
-
}
|
428 |
-
|
429 |
-
/* Sidebar scrollbar styling */
|
430 |
-
.sidebar::-webkit-scrollbar {
|
431 |
-
width: 8px !important;
|
432 |
-
background: #111111 !important;
|
433 |
-
}
|
434 |
-
|
435 |
-
.sidebar::-webkit-scrollbar-track {
|
436 |
-
background: #111111 !important;
|
437 |
-
}
|
438 |
-
|
439 |
-
.sidebar::-webkit-scrollbar-thumb {
|
440 |
-
background-color: #333333 !important;
|
441 |
-
border-radius: 4px !important;
|
442 |
-
}
|
443 |
-
|
444 |
-
.sidebar::-webkit-scrollbar-thumb:hover {
|
445 |
-
background-color: #555555 !important;
|
446 |
-
}
|
447 |
-
|
448 |
-
/* Enhanced model button styling */
|
449 |
-
.model-button {
|
450 |
-
background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
|
451 |
-
color: white !important;
|
452 |
-
border: 2px solid transparent !important;
|
453 |
-
margin: 2px 0 !important;
|
454 |
-
border-radius: 5px !important;
|
455 |
-
padding: 8px 12px !important;
|
456 |
-
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1) !important;
|
457 |
-
position: relative !important;
|
458 |
-
overflow: hidden !important;
|
459 |
-
box-shadow:
|
460 |
-
0 4px 15px rgba(0, 0, 0, 0.2),
|
461 |
-
inset 0 1px 0 rgba(255, 255, 255, 0.1) !important;
|
462 |
-
font-weight: 600 !important;
|
463 |
-
font-size: 16px !important;
|
464 |
-
text-transform: uppercase !important;
|
465 |
-
letter-spacing: 0.5px !important;
|
466 |
-
font-family: monospace !important;
|
467 |
-
}
|
468 |
-
|
469 |
-
.model-button:hover {
|
470 |
-
background: linear-gradient(135deg, #3a3a3a, #2e2e2e) !important;
|
471 |
-
color: #74b9ff !important;
|
472 |
-
}
|
473 |
-
|
474 |
-
.model-button:active {
|
475 |
-
background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
|
476 |
-
color: #5a9bd4 !important;
|
477 |
-
}
|
478 |
-
|
479 |
-
/* Model stats badge */
|
480 |
-
.model-stats {
|
481 |
-
display: flex !important;
|
482 |
-
justify-content: space-between !important;
|
483 |
-
align-items: center !important;
|
484 |
-
margin-top: 8px !important;
|
485 |
-
font-size: 12px !important;
|
486 |
-
opacity: 0.8 !important;
|
487 |
-
}
|
488 |
-
|
489 |
-
.stats-badge {
|
490 |
-
background: rgba(116, 185, 255, 0.2) !important;
|
491 |
-
padding: 4px 8px !important;
|
492 |
-
border-radius: 10px !important;
|
493 |
-
font-weight: 500 !important;
|
494 |
-
font-size: 11px !important;
|
495 |
-
color: #74b9ff !important;
|
496 |
-
}
|
497 |
-
|
498 |
-
.success-indicator {
|
499 |
-
width: 8px !important;
|
500 |
-
height: 8px !important;
|
501 |
-
border-radius: 50% !important;
|
502 |
-
display: inline-block !important;
|
503 |
-
margin-right: 6px !important;
|
504 |
-
}
|
505 |
-
|
506 |
-
.success-high { background-color: #4CAF50 !important; }
|
507 |
-
.success-medium { background-color: #FF9800 !important; }
|
508 |
-
.success-low { background-color: #F44336 !important; }
|
509 |
-
|
510 |
-
/* Summary button styling - distinct from model buttons */
|
511 |
-
.summary-button {
|
512 |
-
background: linear-gradient(135deg, #4a4a4a, #3e3e3e) !important;
|
513 |
-
color: white !important;
|
514 |
-
border: 2px solid #555555 !important;
|
515 |
-
margin: 2px 0 15px 0 !important;
|
516 |
-
border-radius: 5px !important;
|
517 |
-
padding: 12px 12px !important;
|
518 |
-
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1) !important;
|
519 |
-
position: relative !important;
|
520 |
-
overflow: hidden !important;
|
521 |
-
box-shadow:
|
522 |
-
0 4px 15px rgba(0, 0, 0, 0.3),
|
523 |
-
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
|
524 |
-
font-weight: 600 !important;
|
525 |
-
font-size: 16px !important;
|
526 |
-
text-transform: uppercase !important;
|
527 |
-
letter-spacing: 0.5px !important;
|
528 |
-
font-family: monospace !important;
|
529 |
-
height: 60px !important;
|
530 |
-
display: flex !important;
|
531 |
-
flex-direction: column !important;
|
532 |
-
justify-content: center !important;
|
533 |
-
align-items: center !important;
|
534 |
-
line-height: 1.2 !important;
|
535 |
-
}
|
536 |
-
|
537 |
-
.summary-button:hover {
|
538 |
-
background: linear-gradient(135deg, #5a5a5a, #4e4e4e) !important;
|
539 |
-
color: #74b9ff !important;
|
540 |
-
border-color: #666666 !important;
|
541 |
-
}
|
542 |
-
|
543 |
-
.summary-button:active {
|
544 |
-
background: linear-gradient(135deg, #4a4a4a, #3e3e3e) !important;
|
545 |
-
color: #5a9bd4 !important;
|
546 |
-
}
|
547 |
-
|
548 |
-
/* Regular button styling for non-model buttons */
|
549 |
-
.gr-button:not(.model-button):not(.summary-button) {
|
550 |
-
background-color: #222222 !important;
|
551 |
-
color: white !important;
|
552 |
-
border: 1px solid #444444 !important;
|
553 |
-
margin: 5px 0 !important;
|
554 |
-
border-radius: 8px !important;
|
555 |
-
transition: all 0.3s ease !important;
|
556 |
-
}
|
557 |
-
|
558 |
-
.gr-button:not(.model-button):not(.summary-button):hover {
|
559 |
-
background-color: #333333 !important;
|
560 |
-
border-color: #666666 !important;
|
561 |
-
}
|
562 |
-
|
563 |
-
/* Plot container with smooth transitions and controlled scrolling */
|
564 |
-
.plot-container {
|
565 |
-
background-color: #000000 !important;
|
566 |
-
border: none !important;
|
567 |
-
transition: opacity 0.6s ease-in-out !important;
|
568 |
-
flex: 1 1 auto !important;
|
569 |
-
min-height: 0 !important;
|
570 |
-
overflow-y: auto !important;
|
571 |
-
scrollbar-width: thin !important;
|
572 |
-
scrollbar-color: #333333 #000000 !important;
|
573 |
-
}
|
574 |
-
|
575 |
-
/* Custom scrollbar for plot container */
|
576 |
-
.plot-container::-webkit-scrollbar {
|
577 |
-
width: 8px !important;
|
578 |
-
background: #000000 !important;
|
579 |
-
}
|
580 |
-
|
581 |
-
.plot-container::-webkit-scrollbar-track {
|
582 |
-
background: #000000 !important;
|
583 |
-
}
|
584 |
-
|
585 |
-
.plot-container::-webkit-scrollbar-thumb {
|
586 |
-
background-color: #333333 !important;
|
587 |
-
border-radius: 4px !important;
|
588 |
-
}
|
589 |
-
|
590 |
-
.plot-container::-webkit-scrollbar-thumb:hover {
|
591 |
-
background-color: #555555 !important;
|
592 |
-
}
|
593 |
-
|
594 |
-
/* Gradio plot component styling */
|
595 |
-
.gr-plot {
|
596 |
-
background-color: #000000 !important;
|
597 |
-
transition: opacity 0.6s ease-in-out !important;
|
598 |
-
}
|
599 |
-
|
600 |
-
.gr-plot .gradio-plot {
|
601 |
-
background-color: #000000 !important;
|
602 |
-
transition: opacity 0.6s ease-in-out !important;
|
603 |
-
}
|
604 |
-
|
605 |
-
.gr-plot img {
|
606 |
-
transition: opacity 0.6s ease-in-out !important;
|
607 |
-
}
|
608 |
-
|
609 |
-
/* Target the plot wrapper */
|
610 |
-
div[data-testid="plot"] {
|
611 |
-
background-color: #000000 !important;
|
612 |
-
}
|
613 |
-
|
614 |
-
/* Target all possible plot containers */
|
615 |
-
.plot-container img,
|
616 |
-
.gr-plot img,
|
617 |
-
.gradio-plot img {
|
618 |
-
background-color: #000000 !important;
|
619 |
-
}
|
620 |
-
|
621 |
-
/* Ensure plot area background */
|
622 |
-
.gr-plot > div,
|
623 |
-
.plot-container > div {
|
624 |
-
background-color: #000000 !important;
|
625 |
-
}
|
626 |
-
|
627 |
-
/* Prevent white flash during plot updates */
|
628 |
-
.plot-container::before {
|
629 |
-
content: "";
|
630 |
-
position: absolute;
|
631 |
-
top: 0;
|
632 |
-
left: 0;
|
633 |
-
right: 0;
|
634 |
-
bottom: 0;
|
635 |
-
background-color: #000000;
|
636 |
-
z-index: -1;
|
637 |
-
}
|
638 |
-
|
639 |
-
/* Force all plot elements to have black background */
|
640 |
-
.plot-container *,
|
641 |
-
.gr-plot *,
|
642 |
-
div[data-testid="plot"] * {
|
643 |
-
background-color: #000000 !important;
|
644 |
-
}
|
645 |
-
|
646 |
-
/* Override any white backgrounds in matplotlib */
|
647 |
-
.plot-container canvas,
|
648 |
-
.gr-plot canvas {
|
649 |
-
background-color: #000000 !important;
|
650 |
-
}
|
651 |
-
|
652 |
-
/* Text elements */
|
653 |
-
h1, h2, h3, p, .markdown {
|
654 |
-
color: white !important;
|
655 |
-
}
|
656 |
-
|
657 |
-
/* Sidebar header enhancement */
|
658 |
-
.sidebar h1 {
|
659 |
-
background: linear-gradient(45deg, #74b9ff, #a29bfe) !important;
|
660 |
-
-webkit-background-clip: text !important;
|
661 |
-
-webkit-text-fill-color: transparent !important;
|
662 |
-
background-clip: text !important;
|
663 |
-
text-align: center !important;
|
664 |
-
margin-bottom: 15px !important;
|
665 |
-
font-size: 28px !important;
|
666 |
-
font-weight: 700 !important;
|
667 |
-
font-family: monospace !important;
|
668 |
-
}
|
669 |
-
|
670 |
-
/* Sidebar description text */
|
671 |
-
.sidebar p {
|
672 |
-
text-align: center !important;
|
673 |
-
margin-bottom: 20px !important;
|
674 |
-
line-height: 1.5 !important;
|
675 |
-
font-size: 14px !important;
|
676 |
-
font-family: monospace !important;
|
677 |
-
}
|
678 |
-
|
679 |
-
.sidebar strong {
|
680 |
-
color: #74b9ff !important;
|
681 |
-
font-weight: 600 !important;
|
682 |
-
font-family: monospace !important;
|
683 |
-
}
|
684 |
-
|
685 |
-
.sidebar em {
|
686 |
-
color: #a29bfe !important;
|
687 |
-
font-style: normal !important;
|
688 |
-
opacity: 0.9 !important;
|
689 |
-
font-family: monospace !important;
|
690 |
-
}
|
691 |
-
|
692 |
-
/* Remove all borders globally */
|
693 |
-
* {
|
694 |
-
border-color: transparent !important;
|
695 |
-
}
|
696 |
-
|
697 |
-
/* Main content area */
|
698 |
-
.main-content {
|
699 |
-
background-color: #000000 !important;
|
700 |
-
padding: 20px 20px 40px 20px !important;
|
701 |
-
margin-left: 300px !important;
|
702 |
-
height: 100vh !important;
|
703 |
-
overflow-y: auto !important;
|
704 |
-
box-sizing: border-box !important;
|
705 |
-
display: flex !important;
|
706 |
-
flex-direction: column !important;
|
707 |
-
}
|
708 |
-
|
709 |
-
/* Custom scrollbar for main content */
|
710 |
-
.main-content {
|
711 |
-
scrollbar-width: thin !important;
|
712 |
-
scrollbar-color: #333333 #000000 !important;
|
713 |
-
}
|
714 |
-
|
715 |
-
.main-content::-webkit-scrollbar {
|
716 |
-
width: 8px !important;
|
717 |
-
background: #000000 !important;
|
718 |
-
}
|
719 |
-
|
720 |
-
.main-content::-webkit-scrollbar-track {
|
721 |
-
background: #000000 !important;
|
722 |
-
}
|
723 |
-
|
724 |
-
.main-content::-webkit-scrollbar-thumb {
|
725 |
-
background-color: #333333 !important;
|
726 |
-
border-radius: 4px !important;
|
727 |
-
}
|
728 |
-
|
729 |
-
.main-content::-webkit-scrollbar-thumb:hover {
|
730 |
-
background-color: #555555 !important;
|
731 |
-
}
|
732 |
-
|
733 |
-
/* Failed tests display - seamless appearance with constrained height */
|
734 |
-
.failed-tests textarea {
|
735 |
-
background-color: #000000 !important;
|
736 |
-
color: #FFFFFF !important;
|
737 |
-
font-family: monospace !important;
|
738 |
-
font-size: 14px !important;
|
739 |
-
border: none !important;
|
740 |
-
padding: 10px !important;
|
741 |
-
outline: none !important;
|
742 |
-
line-height: 1.4 !important;
|
743 |
-
height: 180px !important;
|
744 |
-
max-height: 180px !important;
|
745 |
-
min-height: 180px !important;
|
746 |
-
overflow-y: auto !important;
|
747 |
-
resize: none !important;
|
748 |
-
scrollbar-width: thin !important;
|
749 |
-
scrollbar-color: #333333 #000000 !important;
|
750 |
-
scroll-behavior: auto;
|
751 |
-
transition: opacity 0.5s ease-in-out !important;
|
752 |
-
}
|
753 |
-
|
754 |
-
/* WebKit scrollbar styling for failed tests */
|
755 |
-
.failed-tests textarea::-webkit-scrollbar {
|
756 |
-
width: 8px !important;
|
757 |
-
}
|
758 |
-
|
759 |
-
.failed-tests textarea::-webkit-scrollbar-track {
|
760 |
-
background: #000000 !important;
|
761 |
-
}
|
762 |
-
|
763 |
-
.failed-tests textarea::-webkit-scrollbar-thumb {
|
764 |
-
background-color: #333333 !important;
|
765 |
-
border-radius: 4px !important;
|
766 |
-
}
|
767 |
-
|
768 |
-
.failed-tests textarea::-webkit-scrollbar-thumb:hover {
|
769 |
-
background-color: #555555 !important;
|
770 |
-
}
|
771 |
-
|
772 |
-
/* Prevent white flash in text boxes during updates */
|
773 |
-
.failed-tests::before {
|
774 |
-
content: "";
|
775 |
-
position: absolute;
|
776 |
-
top: 0;
|
777 |
-
left: 0;
|
778 |
-
right: 0;
|
779 |
-
bottom: 0;
|
780 |
-
background-color: #000000;
|
781 |
-
z-index: -1;
|
782 |
-
}
|
783 |
-
|
784 |
-
.failed-tests {
|
785 |
-
background-color: #000000 !important;
|
786 |
-
height: 200px !important;
|
787 |
-
max-height: 200px !important;
|
788 |
-
min-height: 200px !important;
|
789 |
-
position: relative;
|
790 |
-
transition: opacity 0.5s ease-in-out !important;
|
791 |
-
flex-shrink: 0 !important;
|
792 |
-
}
|
793 |
-
|
794 |
-
.failed-tests .gr-textbox {
|
795 |
-
background-color: #000000 !important;
|
796 |
-
border: none !important;
|
797 |
-
height: 180px !important;
|
798 |
-
max-height: 180px !important;
|
799 |
-
min-height: 180px !important;
|
800 |
-
transition: opacity 0.5s ease-in-out !important;
|
801 |
-
}
|
802 |
-
|
803 |
-
/* Force all textbox elements to have black background */
|
804 |
-
.failed-tests *,
|
805 |
-
.failed-tests .gr-textbox *,
|
806 |
-
.failed-tests textarea * {
|
807 |
-
background-color: #000000 !important;
|
808 |
-
}
|
809 |
-
|
810 |
-
/* Summary display styling */
|
811 |
-
.summary-display textarea {
|
812 |
-
background-color: #000000 !important;
|
813 |
-
color: #FFFFFF !important;
|
814 |
-
font-family: monospace !important;
|
815 |
-
font-size: 24px !important;
|
816 |
-
border: none !important;
|
817 |
-
padding: 20px !important;
|
818 |
-
outline: none !important;
|
819 |
-
line-height: 2 !important;
|
820 |
-
text-align: right !important;
|
821 |
-
resize: none !important;
|
822 |
-
}
|
823 |
-
|
824 |
-
.summary-display {
|
825 |
-
background-color: #000000 !important;
|
826 |
-
}
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
/* Detail view layout */
|
831 |
-
.detail-view {
|
832 |
-
display: flex !important;
|
833 |
-
flex-direction: column !important;
|
834 |
-
height: 100% !important;
|
835 |
-
min-height: 0 !important;
|
836 |
-
}
|
837 |
-
|
838 |
-
/* JavaScript to reset scroll position */
|
839 |
-
.scroll-reset {
|
840 |
-
animation: resetScroll 0.1s ease;
|
841 |
-
}
|
842 |
-
|
843 |
-
@keyframes resetScroll {
|
844 |
-
0% { scroll-behavior: auto; }
|
845 |
-
100% { scroll-behavior: auto; }
|
846 |
-
}
|
847 |
-
|
848 |
-
|
849 |
-
"""
|
850 |
|
851 |
# Create the Gradio interface with sidebar and dark theme
|
852 |
-
with gr.Blocks(title="Model Test Results Dashboard", css=
|
853 |
|
854 |
with gr.Row():
|
855 |
-
# Sidebar for model selection
|
856 |
with gr.Column(scale=1, elem_classes=["sidebar"]):
|
857 |
gr.Markdown("# 🤖 TCID")
|
858 |
-
gr.Markdown("**Transformer CI Dashboard**\n\n*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
859 |
|
860 |
# Summary button at the top
|
861 |
summary_button = gr.Button(
|
@@ -865,16 +454,18 @@ with gr.Blocks(title="Model Test Results Dashboard", css=dark_theme_css) as demo
|
|
865 |
elem_classes=["summary-button"]
|
866 |
)
|
867 |
|
868 |
-
#
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
|
|
|
|
878 |
|
879 |
# Main content area
|
880 |
with gr.Column(scale=4, elem_classes=["main-content"]):
|
@@ -901,7 +492,7 @@ with gr.Blocks(title="Model Test Results Dashboard", css=dark_theme_css) as demo
|
|
901 |
with gr.Row():
|
902 |
with gr.Column(scale=1):
|
903 |
amd_failed_tests_output = gr.Textbox(
|
904 |
-
value="
|
905 |
lines=8,
|
906 |
max_lines=8,
|
907 |
interactive=False,
|
@@ -910,7 +501,7 @@ with gr.Blocks(title="Model Test Results Dashboard", css=dark_theme_css) as demo
|
|
910 |
)
|
911 |
with gr.Column(scale=1):
|
912 |
nvidia_failed_tests_output = gr.Textbox(
|
913 |
-
value="
|
914 |
lines=8,
|
915 |
max_lines=8,
|
916 |
interactive=False,
|
@@ -918,27 +509,127 @@ with gr.Blocks(title="Model Test Results Dashboard", css=dark_theme_css) as demo
|
|
918 |
elem_classes=["failed-tests"]
|
919 |
)
|
920 |
|
921 |
-
# Set up
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
fn=None,
|
931 |
-
js="() => { setTimeout(() => { document.querySelectorAll('textarea').forEach(t => { if (t.closest('.failed-tests')) { t.scrollTop = 0; setTimeout(() => { t.style.scrollBehavior = 'smooth'; t.scrollTo({ top: 0, behavior: 'smooth' }); t.style.scrollBehavior = 'auto'; }, 50); } }); }, 300); }"
|
932 |
-
)
|
933 |
|
934 |
# Summary button click handler
|
|
|
|
|
|
|
|
|
935 |
summary_button.click(
|
936 |
-
fn=
|
937 |
-
outputs=[summary_display]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
938 |
).then(
|
939 |
fn=lambda: [gr.update(visible=True), gr.update(visible=False)],
|
940 |
outputs=[summary_display, detail_view]
|
941 |
)
|
942 |
|
|
|
|
|
|
|
|
|
|
|
|
|
943 |
if __name__ == "__main__":
|
944 |
demo.launch()
|
|
|
1 |
import matplotlib.pyplot as plt
|
2 |
import matplotlib
|
3 |
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
import gradio as gr
|
6 |
+
import threading
|
7 |
+
import time
|
8 |
+
from datetime import datetime
|
9 |
+
from data import get_data
|
10 |
|
11 |
# Configure matplotlib to prevent memory warnings and set dark background
|
12 |
matplotlib.rcParams['figure.max_open_warning'] = 0
|
|
|
15 |
matplotlib.rcParams['savefig.facecolor'] = '#000000'
|
16 |
plt.ioff() # Turn off interactive mode to prevent figure accumulation
|
17 |
|
18 |
+
# Global variables for data
|
19 |
+
df = pd.DataFrame()
|
20 |
+
available_models = []
|
21 |
+
last_update_time = None
|
22 |
+
|
23 |
+
def load_data():
|
24 |
+
"""Load data from the data source."""
|
25 |
+
global df, available_models, last_update_time
|
26 |
+
try:
|
27 |
+
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Loading data...")
|
28 |
+
new_df = get_data()
|
29 |
+
new_models = new_df.index.tolist()
|
30 |
+
|
31 |
+
# Update global variables
|
32 |
+
df = new_df
|
33 |
+
available_models = new_models
|
34 |
+
last_update_time = datetime.now()
|
35 |
+
|
36 |
+
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Data loaded successfully: {len(available_models)} models")
|
37 |
+
print(f"Models: {available_models[:5]}{'...' if len(available_models) > 5 else ''}")
|
38 |
+
|
39 |
+
return True
|
40 |
+
except Exception as e:
|
41 |
+
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Error loading data: {e}")
|
42 |
+
return False
|
43 |
+
|
44 |
+
def schedule_data_reload():
|
45 |
+
"""Schedule the next data reload."""
|
46 |
+
def reload_data():
|
47 |
+
load_data()
|
48 |
+
# Schedule the next reload in 15 minutes (900 seconds)
|
49 |
+
timer = threading.Timer(900.0, reload_data)
|
50 |
+
timer.daemon = True # Dies when main thread dies
|
51 |
+
timer.start()
|
52 |
+
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Next data reload scheduled in 15 minutes")
|
53 |
+
|
54 |
+
# Start the first reload timer
|
55 |
+
timer = threading.Timer(900.0, reload_data)
|
56 |
+
timer.daemon = True
|
57 |
+
timer.start()
|
58 |
+
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Data auto-reload scheduled every 15 minutes")
|
59 |
|
60 |
+
# Load data once at startup
|
61 |
+
if not load_data():
|
62 |
+
print("WARNING: Failed to load data! Adding fallback models.")
|
63 |
+
available_models = ["auto", "bert", "clip", "llama", "t5"] # Fallback models for testing
|
64 |
+
|
65 |
+
# Start the auto-reload scheduler
|
66 |
+
schedule_data_reload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def generate_underlined_line(text: str) -> str:
|
69 |
return text + "\n" + "─" * len(text) + "\n"
|
70 |
|
71 |
def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]:
|
72 |
"""Draws a pie chart of model's passed, failed, skipped, and error stats."""
|
73 |
+
if df.empty or model_name not in df.index:
|
74 |
+
# Handle case where model data is not available
|
75 |
+
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
|
76 |
+
ax.set_facecolor('#000000')
|
77 |
+
ax.text(0.5, 0.5, f'No data available for {model_name}',
|
78 |
+
horizontalalignment='center', verticalalignment='center',
|
79 |
+
transform=ax.transAxes, fontsize=16, color='#888888',
|
80 |
+
fontfamily='monospace', weight='normal')
|
81 |
+
ax.set_xlim(0, 1)
|
82 |
+
ax.set_ylim(0, 1)
|
83 |
+
ax.axis('off')
|
84 |
+
return fig, "No data available", "No data available"
|
85 |
+
|
86 |
+
row = df.loc[model_name]
|
87 |
+
|
88 |
+
# Handle missing values and get counts directly from dataframe
|
89 |
+
success_amd = int(row.get('success_amd', 0)) if pd.notna(row.get('success_amd', 0)) else 0
|
90 |
+
success_nvidia = int(row.get('success_nvidia', 0)) if pd.notna(row.get('success_nvidia', 0)) else 0
|
91 |
+
failed_multi_amd = int(row.get('failed_multi_no_amd', 0)) if pd.notna(row.get('failed_multi_no_amd', 0)) else 0
|
92 |
+
failed_multi_nvidia = int(row.get('failed_multi_no_nvidia', 0)) if pd.notna(row.get('failed_multi_no_nvidia', 0)) else 0
|
93 |
+
failed_single_amd = int(row.get('failed_single_no_amd', 0)) if pd.notna(row.get('failed_single_no_amd', 0)) else 0
|
94 |
+
failed_single_nvidia = int(row.get('failed_single_no_nvidia', 0)) if pd.notna(row.get('failed_single_no_nvidia', 0)) else 0
|
95 |
+
|
96 |
+
# Calculate total failures
|
97 |
+
total_failed_amd = failed_multi_amd + failed_single_amd
|
98 |
+
total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia
|
99 |
|
100 |
# Softer color palette - less pastel, more vibrant
|
101 |
colors = {
|
|
|
105 |
'error': '#8B0000' # Dark red
|
106 |
}
|
107 |
|
108 |
+
# Create stats dictionaries directly from dataframe values
|
109 |
+
amd_stats = {
|
110 |
+
'passed': success_amd,
|
111 |
+
'failed': total_failed_amd,
|
112 |
+
'skipped': 0, # Not available in this dataset
|
113 |
+
'error': 0 # Not available in this dataset
|
114 |
+
}
|
115 |
+
|
116 |
+
nvidia_stats = {
|
117 |
+
'passed': success_nvidia,
|
118 |
+
'failed': total_failed_nvidia,
|
119 |
+
'skipped': 0, # Not available in this dataset
|
120 |
+
'error': 0 # Not available in this dataset
|
121 |
+
}
|
122 |
|
123 |
# Filter out categories with 0 values for cleaner visualization
|
124 |
amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
|
|
|
207 |
plt.tight_layout()
|
208 |
plt.subplots_adjust(top=0.85, wspace=0.4) # Added wspace for padding between charts
|
209 |
|
210 |
+
# Generate failure info directly from dataframe
|
211 |
+
failures_amd = row.get('failures_amd', {})
|
212 |
+
failures_nvidia = row.get('failures_nvidia', {})
|
213 |
+
|
214 |
+
amd_failed_info = extract_failure_info(failures_amd, 'AMD', failed_multi_amd, failed_single_amd)
|
215 |
+
nvidia_failed_info = extract_failure_info(failures_nvidia, 'NVIDIA', failed_multi_nvidia, failed_single_nvidia)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
return fig, amd_failed_info, nvidia_failed_info
|
218 |
|
219 |
+
def extract_failure_info(failures_obj, device: str, multi_count: int, single_count: int) -> str:
|
220 |
+
"""Extract failure information from failures object."""
|
221 |
+
if (not failures_obj or pd.isna(failures_obj)) and multi_count == 0 and single_count == 0:
|
222 |
+
return f"No failures on {device}"
|
223 |
+
|
224 |
+
info_lines = []
|
225 |
+
|
226 |
+
# Add counts summary
|
227 |
+
if multi_count > 0 or single_count > 0:
|
228 |
+
info_lines.append(generate_underlined_line(f"Failure Summary for {device}:"))
|
229 |
+
if multi_count > 0:
|
230 |
+
info_lines.append(f"Multi GPU failures: {multi_count}")
|
231 |
+
if single_count > 0:
|
232 |
+
info_lines.append(f"Single GPU failures: {single_count}")
|
233 |
+
info_lines.append("")
|
234 |
+
|
235 |
+
# Try to extract detailed failure information
|
236 |
+
try:
|
237 |
+
if isinstance(failures_obj, dict):
|
238 |
+
# Check for multi and single failure categories
|
239 |
+
if 'multi' in failures_obj and failures_obj['multi']:
|
240 |
+
info_lines.append(generate_underlined_line(f"Multi GPU failure details:"))
|
241 |
+
if isinstance(failures_obj['multi'], list):
|
242 |
+
# Handle list of failures (could be strings or dicts)
|
243 |
+
for i, failure in enumerate(failures_obj['multi'][:10]): # Limit to first 10
|
244 |
+
if isinstance(failure, dict):
|
245 |
+
# Extract meaningful info from dict (e.g., test name, line, etc.)
|
246 |
+
failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure))))
|
247 |
+
info_lines.append(f" {i+1}. {failure_str}")
|
248 |
+
else:
|
249 |
+
info_lines.append(f" {i+1}. {str(failure)}")
|
250 |
+
if len(failures_obj['multi']) > 10:
|
251 |
+
info_lines.append(f"... and {len(failures_obj['multi']) - 10} more")
|
252 |
+
else:
|
253 |
+
info_lines.append(str(failures_obj['multi']))
|
254 |
+
info_lines.append("")
|
255 |
+
|
256 |
+
if 'single' in failures_obj and failures_obj['single']:
|
257 |
+
info_lines.append(generate_underlined_line(f"Single GPU failure details:"))
|
258 |
+
if isinstance(failures_obj['single'], list):
|
259 |
+
# Handle list of failures (could be strings or dicts)
|
260 |
+
for i, failure in enumerate(failures_obj['single'][:10]): # Limit to first 10
|
261 |
+
if isinstance(failure, dict):
|
262 |
+
# Extract meaningful info from dict (e.g., test name, line, etc.)
|
263 |
+
failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure))))
|
264 |
+
info_lines.append(f" {i+1}. {failure_str}")
|
265 |
+
else:
|
266 |
+
info_lines.append(f" {i+1}. {str(failure)}")
|
267 |
+
if len(failures_obj['single']) > 10:
|
268 |
+
info_lines.append(f"... and {len(failures_obj['single']) - 10} more")
|
269 |
+
else:
|
270 |
+
info_lines.append(str(failures_obj['single']))
|
271 |
+
|
272 |
+
return "\n".join(info_lines) if info_lines else f"No detailed failure info for {device}"
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
if multi_count > 0 or single_count > 0:
|
276 |
+
return f"Failures detected on {device} (Multi: {multi_count}, Single: {single_count})\nDetails unavailable: {str(e)}"
|
277 |
+
return f"Error processing failure info for {device}: {str(e)}"
|
278 |
|
279 |
def create_summary_page() -> plt.Figure:
|
280 |
"""Create a summary page with model names and both AMD/NVIDIA test stats bars."""
|
281 |
+
if df.empty:
|
282 |
+
fig, ax = plt.subplots(figsize=(16, 8), facecolor='#000000')
|
283 |
+
ax.set_facecolor('#000000')
|
284 |
+
ax.text(0.5, 0.5, 'No data available',
|
285 |
+
horizontalalignment='center', verticalalignment='center',
|
286 |
+
transform=ax.transAxes, fontsize=20, color='#888888',
|
287 |
+
fontfamily='monospace', weight='normal')
|
288 |
+
ax.axis('off')
|
289 |
+
return fig
|
290 |
+
|
291 |
+
fig, ax = plt.subplots(figsize=(16, len(available_models) * 2.5 + 2), facecolor='#000000')
|
292 |
ax.set_facecolor('#000000')
|
293 |
|
294 |
colors = {
|
|
|
300 |
|
301 |
visible_model_count = 0
|
302 |
max_y = 0
|
303 |
+
|
304 |
+
for i, model_name in enumerate(available_models):
|
305 |
+
if model_name not in df.index:
|
306 |
+
continue
|
307 |
+
|
308 |
+
row = df.loc[model_name]
|
309 |
+
|
310 |
+
# Get values directly from dataframe
|
311 |
+
success_amd = int(row.get('success_amd', 0)) if pd.notna(row.get('success_amd', 0)) else 0
|
312 |
+
success_nvidia = int(row.get('success_nvidia', 0)) if pd.notna(row.get('success_nvidia', 0)) else 0
|
313 |
+
failed_multi_amd = int(row.get('failed_multi_no_amd', 0)) if pd.notna(row.get('failed_multi_no_amd', 0)) else 0
|
314 |
+
failed_multi_nvidia = int(row.get('failed_multi_no_nvidia', 0)) if pd.notna(row.get('failed_multi_no_nvidia', 0)) else 0
|
315 |
+
failed_single_amd = int(row.get('failed_single_no_amd', 0)) if pd.notna(row.get('failed_single_no_amd', 0)) else 0
|
316 |
+
failed_single_nvidia = int(row.get('failed_single_no_nvidia', 0)) if pd.notna(row.get('failed_single_no_nvidia', 0)) else 0
|
317 |
+
|
318 |
+
# Calculate stats
|
319 |
+
amd_stats = {
|
320 |
+
'passed': success_amd,
|
321 |
+
'failed': failed_multi_amd + failed_single_amd,
|
322 |
+
'skipped': 0,
|
323 |
+
'error': 0
|
324 |
+
}
|
325 |
+
|
326 |
+
nvidia_stats = {
|
327 |
+
'passed': success_nvidia,
|
328 |
+
'failed': failed_multi_nvidia + failed_single_nvidia,
|
329 |
+
'skipped': 0,
|
330 |
+
'error': 0
|
331 |
+
}
|
332 |
+
|
333 |
amd_total = sum(amd_stats.values())
|
|
|
334 |
nvidia_total = sum(nvidia_stats.values())
|
335 |
|
336 |
if amd_total == 0 and nvidia_total == 0:
|
|
|
410 |
|
411 |
return fig
|
412 |
|
413 |
+
# Load CSS from external file
|
414 |
+
def load_css():
|
415 |
+
try:
|
416 |
+
with open("styles.css", "r") as f:
|
417 |
+
return f.read()
|
418 |
+
except FileNotFoundError:
|
419 |
+
print("Warning: styles.css not found, using minimal default styles")
|
420 |
+
return "body { background: #000; color: #fff; }"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
# Create the Gradio interface with sidebar and dark theme
|
423 |
+
with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
424 |
|
425 |
with gr.Row():
|
426 |
+
# Sidebar for model selection
|
427 |
with gr.Column(scale=1, elem_classes=["sidebar"]):
|
428 |
gr.Markdown("# 🤖 TCID")
|
429 |
+
gr.Markdown("**Transformer CI Dashboard**\n\n*Result overview by model and hardware*\n")
|
430 |
+
|
431 |
+
# Data status indicator
|
432 |
+
if last_update_time:
|
433 |
+
status_text = f"📊 **Updated:** {last_update_time.strftime('%H:%M')}\n\n*Auto-refresh: 15min*"
|
434 |
+
else:
|
435 |
+
status_text = f"📊 **Loading...**\n\n*Auto-refresh: 15min*"
|
436 |
+
status_display = gr.Markdown(status_text)
|
437 |
+
|
438 |
+
# Manual refresh button
|
439 |
+
refresh_button = gr.Button(
|
440 |
+
"🔄 refresh data",
|
441 |
+
variant="secondary",
|
442 |
+
size="sm",
|
443 |
+
elem_classes=["refresh-button"]
|
444 |
+
)
|
445 |
+
|
446 |
+
# CI job links
|
447 |
+
ci_links_display = gr.Markdown("🔗 **CI Jobs:** *Loading...*")
|
448 |
|
449 |
# Summary button at the top
|
450 |
summary_button = gr.Button(
|
|
|
454 |
elem_classes=["summary-button"]
|
455 |
)
|
456 |
|
457 |
+
# Back to simple buttons that work
|
458 |
+
# Model selector dropdown - much better for long lists
|
459 |
+
gr.Markdown(f"**Select Model ({len(available_models)}):**")
|
460 |
+
|
461 |
+
model_choices = [model.lower() for model in available_models] if available_models else ["auto", "bert", "clip", "llama"]
|
462 |
+
model_dropdown = gr.Dropdown(
|
463 |
+
choices=model_choices,
|
464 |
+
value=model_choices[0] if model_choices else "auto",
|
465 |
+
label="Choose Model",
|
466 |
+
interactive=True,
|
467 |
+
allow_custom_value=False
|
468 |
+
)
|
469 |
|
470 |
# Main content area
|
471 |
with gr.Column(scale=4, elem_classes=["main-content"]):
|
|
|
492 |
with gr.Row():
|
493 |
with gr.Column(scale=1):
|
494 |
amd_failed_tests_output = gr.Textbox(
|
495 |
+
value="",
|
496 |
lines=8,
|
497 |
max_lines=8,
|
498 |
interactive=False,
|
|
|
501 |
)
|
502 |
with gr.Column(scale=1):
|
503 |
nvidia_failed_tests_output = gr.Textbox(
|
504 |
+
value="",
|
505 |
lines=8,
|
506 |
max_lines=8,
|
507 |
interactive=False,
|
|
|
509 |
elem_classes=["failed-tests"]
|
510 |
)
|
511 |
|
512 |
+
# Set up change handler for dropdown
|
513 |
+
model_dropdown.change(
|
514 |
+
fn=lambda selected_model: plot_model_stats(selected_model),
|
515 |
+
inputs=[model_dropdown],
|
516 |
+
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
|
517 |
+
).then(
|
518 |
+
fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
|
519 |
+
outputs=[summary_display, detail_view]
|
520 |
+
)
|
|
|
|
|
|
|
521 |
|
522 |
# Summary button click handler
|
523 |
+
def show_summary_and_update_links():
|
524 |
+
"""Show summary page and update CI links."""
|
525 |
+
return create_summary_page(), get_ci_links()
|
526 |
+
|
527 |
summary_button.click(
|
528 |
+
fn=show_summary_and_update_links,
|
529 |
+
outputs=[summary_display, ci_links_display]
|
530 |
+
).then(
|
531 |
+
fn=lambda: [gr.update(visible=True), gr.update(visible=False)],
|
532 |
+
outputs=[summary_display, detail_view]
|
533 |
+
)
|
534 |
+
|
535 |
+
# Function to get current status text
|
536 |
+
def get_status_text():
|
537 |
+
"""Get current status text with last update time."""
|
538 |
+
if last_update_time:
|
539 |
+
return f"📊 **Updated:** {last_update_time.strftime('%H:%M')}\n\n*Auto-refresh: 15min*"
|
540 |
+
else:
|
541 |
+
return f"📊 **Loading...**\n\n*Auto-refresh: 15min*"
|
542 |
+
|
543 |
+
# Function to get CI job links
|
544 |
+
def get_ci_links():
|
545 |
+
"""Get CI job links from the most recent data."""
|
546 |
+
try:
|
547 |
+
# Check if df exists and is not empty
|
548 |
+
if 'df' not in globals() or df is None or df.empty:
|
549 |
+
return "🔗 **CI Jobs:** *Loading...*"
|
550 |
+
|
551 |
+
# Get links from any available model (they should be the same for all models in a run)
|
552 |
+
amd_multi_link = None
|
553 |
+
amd_single_link = None
|
554 |
+
nvidia_multi_link = None
|
555 |
+
nvidia_single_link = None
|
556 |
+
|
557 |
+
for model_name in df.index:
|
558 |
+
row = df.loc[model_name]
|
559 |
+
|
560 |
+
# Extract AMD links
|
561 |
+
if pd.notna(row.get('job_link_amd')) and (not amd_multi_link or not amd_single_link):
|
562 |
+
amd_link_raw = row.get('job_link_amd')
|
563 |
+
if isinstance(amd_link_raw, dict):
|
564 |
+
if 'multi' in amd_link_raw and not amd_multi_link:
|
565 |
+
amd_multi_link = amd_link_raw['multi']
|
566 |
+
if 'single' in amd_link_raw and not amd_single_link:
|
567 |
+
amd_single_link = amd_link_raw['single']
|
568 |
+
|
569 |
+
# Extract NVIDIA links
|
570 |
+
if pd.notna(row.get('job_link_nvidia')) and (not nvidia_multi_link or not nvidia_single_link):
|
571 |
+
nvidia_link_raw = row.get('job_link_nvidia')
|
572 |
+
if isinstance(nvidia_link_raw, dict):
|
573 |
+
if 'multi' in nvidia_link_raw and not nvidia_multi_link:
|
574 |
+
nvidia_multi_link = nvidia_link_raw['multi']
|
575 |
+
if 'single' in nvidia_link_raw and not nvidia_single_link:
|
576 |
+
nvidia_single_link = nvidia_link_raw['single']
|
577 |
+
|
578 |
+
# Break if we have all links
|
579 |
+
if amd_multi_link and amd_single_link and nvidia_multi_link and nvidia_single_link:
|
580 |
+
break
|
581 |
+
|
582 |
+
links_md = "🔗 **CI Jobs:**\n\n"
|
583 |
+
|
584 |
+
# AMD links
|
585 |
+
if amd_multi_link or amd_single_link:
|
586 |
+
links_md += "**AMD:**\n"
|
587 |
+
if amd_multi_link:
|
588 |
+
links_md += f"• [Multi GPU]({amd_multi_link})\n"
|
589 |
+
if amd_single_link:
|
590 |
+
links_md += f"• [Single GPU]({amd_single_link})\n"
|
591 |
+
links_md += "\n"
|
592 |
+
|
593 |
+
# NVIDIA links
|
594 |
+
if nvidia_multi_link or nvidia_single_link:
|
595 |
+
links_md += "**NVIDIA:**\n"
|
596 |
+
if nvidia_multi_link:
|
597 |
+
links_md += f"• [Multi GPU]({nvidia_multi_link})\n"
|
598 |
+
if nvidia_single_link:
|
599 |
+
links_md += f"• [Single GPU]({nvidia_single_link})\n"
|
600 |
+
|
601 |
+
if not (amd_multi_link or amd_single_link or nvidia_multi_link or nvidia_single_link):
|
602 |
+
links_md += "*No links available*"
|
603 |
+
|
604 |
+
return links_md
|
605 |
+
except Exception as e:
|
606 |
+
print(f"Error getting CI links: {e}")
|
607 |
+
return "🔗 **CI Jobs:** *Error loading links*"
|
608 |
+
|
609 |
+
# Refresh button click handler
|
610 |
+
def refresh_data_and_status():
|
611 |
+
"""Manual data refresh triggered by user."""
|
612 |
+
success = load_data()
|
613 |
+
if success:
|
614 |
+
# Return updated summary page, status, and CI links
|
615 |
+
return create_summary_page(), get_status_text(), get_ci_links()
|
616 |
+
else:
|
617 |
+
# Return current summary page, status, and CI links if reload failed
|
618 |
+
return create_summary_page(), get_status_text(), get_ci_links()
|
619 |
+
|
620 |
+
refresh_button.click(
|
621 |
+
fn=refresh_data_and_status,
|
622 |
+
outputs=[summary_display, status_display, ci_links_display]
|
623 |
).then(
|
624 |
fn=lambda: [gr.update(visible=True), gr.update(visible=False)],
|
625 |
outputs=[summary_display, detail_view]
|
626 |
)
|
627 |
|
628 |
+
# Auto-update CI links when the interface loads
|
629 |
+
demo.load(
|
630 |
+
fn=get_ci_links,
|
631 |
+
outputs=[ci_links_display]
|
632 |
+
)
|
633 |
+
|
634 |
if __name__ == "__main__":
|
635 |
demo.launch()
|
data.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import HfApi, HfFileSystem, login
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
fs = HfFileSystem()
|
5 |
+
|
6 |
+
IMPORTANT_MODELS = [
|
7 |
+
"auto",
|
8 |
+
"bert", # old but dominant (encoder only)
|
9 |
+
"gpt2", # old (decoder)
|
10 |
+
"t5", # old (encoder-decoder)
|
11 |
+
"modernbert", # (encoder only)
|
12 |
+
"vit", # old (vision) - fixed comma
|
13 |
+
"clip", # old but dominant (vision)
|
14 |
+
"detr", # objection detection, segmentation (vision)
|
15 |
+
"table-transformer", # objection detection (visioin) - maybe just detr?
|
16 |
+
"got_ocr2", # ocr (vision)
|
17 |
+
"whisper", # old but dominant (audio)
|
18 |
+
"wav2vec2", # old (audio)
|
19 |
+
"llama", # new and dominant (meta)
|
20 |
+
"gemma3", # new (google)
|
21 |
+
"qwen2", # new (Alibaba)
|
22 |
+
"mistral3", # new (Mistral) - added missing comma
|
23 |
+
"qwen2_5_vl", # new (vision)
|
24 |
+
"llava", # many models from it (vision)
|
25 |
+
"smolvlm", # new (video)
|
26 |
+
"internvl", # new (video)
|
27 |
+
"gemma3n", # new (omnimodal models)
|
28 |
+
"qwen2_5_omni", # new (omnimodal models)
|
29 |
+
]
|
30 |
+
|
31 |
+
|
32 |
+
def get_data():
|
33 |
+
files_amd = fs.glob(
|
34 |
+
"hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
|
35 |
+
)
|
36 |
+
files_amd.sort(reverse=True)
|
37 |
+
|
38 |
+
df_amd = pd.read_json(f"hf://{files_amd[0]}", orient="index")
|
39 |
+
df_amd.index.name = "model_name"
|
40 |
+
df_amd["failed_multi_no_amd"] = df_amd["failures"].apply(
|
41 |
+
lambda x: len(x["multi"]) if "multi" in x else 0
|
42 |
+
)
|
43 |
+
df_amd["failed_single_no_amd"] = df_amd["failures"].apply(
|
44 |
+
lambda x: len(x["single"]) if "single" in x else 0
|
45 |
+
)
|
46 |
+
|
47 |
+
files_nvidia = fs.glob(
|
48 |
+
"hf://datasets/hf-internal-testing/transformers_daily_ci/**/ci_results_run_models_gpu/model_results.json"
|
49 |
+
)
|
50 |
+
files_nvidia.sort(reverse=True)
|
51 |
+
|
52 |
+
df_nvidia = pd.read_json(
|
53 |
+
f"https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/main/{files_nvidia[0].lstrip('datasets/hf-internal-testing/transformers_daily_ci/')}",
|
54 |
+
orient="index",
|
55 |
+
)
|
56 |
+
df_nvidia.index.name = "model_name"
|
57 |
+
df_nvidia["failed_multi_no_nvidia"] = df_nvidia["failures"].apply(
|
58 |
+
lambda x: len(x["multi"]) if "multi" in x else 0
|
59 |
+
)
|
60 |
+
df_nvidia["failed_single_no_nvidia"] = df_nvidia["failures"].apply(
|
61 |
+
lambda x: len(x["single"]) if "single" in x else 0
|
62 |
+
)
|
63 |
+
df_nvidia
|
64 |
+
|
65 |
+
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
|
66 |
+
joined = joined[
|
67 |
+
[
|
68 |
+
"success_amd",
|
69 |
+
"success_nvidia",
|
70 |
+
"failed_multi_no_amd",
|
71 |
+
"failed_multi_no_nvidia",
|
72 |
+
"failed_single_no_amd",
|
73 |
+
"failed_single_no_nvidia",
|
74 |
+
"failures_amd",
|
75 |
+
"failures_nvidia",
|
76 |
+
"job_link_amd",
|
77 |
+
"job_link_nvidia",
|
78 |
+
]
|
79 |
+
]
|
80 |
+
|
81 |
+
joined.index = joined.index.str.replace("^models_", "", regex=True)
|
82 |
+
|
83 |
+
important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
|
84 |
+
filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
|
85 |
+
|
86 |
+
return filtered_joined
|
styles.css
ADDED
@@ -0,0 +1,589 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Global dark theme */
|
2 |
+
.gradio-container {
|
3 |
+
background-color: #000000 !important;
|
4 |
+
color: white !important;
|
5 |
+
height: 100vh !important;
|
6 |
+
max-height: 100vh !important;
|
7 |
+
overflow: hidden !important;
|
8 |
+
}
|
9 |
+
|
10 |
+
/* Remove borders from all components */
|
11 |
+
.gr-box, .gr-form, .gr-panel {
|
12 |
+
border: none !important;
|
13 |
+
background-color: #000000 !important;
|
14 |
+
}
|
15 |
+
|
16 |
+
/* Simplified sidebar styling */
|
17 |
+
.sidebar {
|
18 |
+
background: linear-gradient(145deg, #111111, #1a1a1a) !important;
|
19 |
+
border: none !important;
|
20 |
+
padding: 15px !important;
|
21 |
+
margin: 0 !important;
|
22 |
+
height: 100vh !important;
|
23 |
+
position: fixed !important;
|
24 |
+
left: 0 !important;
|
25 |
+
top: 0 !important;
|
26 |
+
width: 300px !important;
|
27 |
+
box-sizing: border-box !important;
|
28 |
+
overflow-y: auto !important;
|
29 |
+
overflow-x: hidden !important;
|
30 |
+
}
|
31 |
+
|
32 |
+
/* Target the actual Gradio column containing sidebar */
|
33 |
+
div[data-testid="column"]:has(.sidebar) {
|
34 |
+
height: 100vh !important;
|
35 |
+
overflow-y: auto !important;
|
36 |
+
overflow-x: hidden !important;
|
37 |
+
}
|
38 |
+
|
39 |
+
/* Scrollbar styling for sidebar */
|
40 |
+
.sidebar::-webkit-scrollbar {
|
41 |
+
width: 8px !important;
|
42 |
+
background: #111111 !important;
|
43 |
+
}
|
44 |
+
|
45 |
+
.sidebar::-webkit-scrollbar-track {
|
46 |
+
background: #111111 !important;
|
47 |
+
}
|
48 |
+
|
49 |
+
.sidebar::-webkit-scrollbar-thumb {
|
50 |
+
background-color: #333333 !important;
|
51 |
+
border-radius: 4px !important;
|
52 |
+
}
|
53 |
+
|
54 |
+
.sidebar::-webkit-scrollbar-thumb:hover {
|
55 |
+
background-color: #555555 !important;
|
56 |
+
}
|
57 |
+
|
58 |
+
/* Ensure all sidebar content fits within width */
|
59 |
+
.sidebar * {
|
60 |
+
max-width: 100% !important;
|
61 |
+
word-wrap: break-word !important;
|
62 |
+
overflow-wrap: break-word !important;
|
63 |
+
}
|
64 |
+
|
65 |
+
/* Specific control for markdown content */
|
66 |
+
.sidebar .markdown,
|
67 |
+
.sidebar h1,
|
68 |
+
.sidebar h2,
|
69 |
+
.sidebar h3,
|
70 |
+
.sidebar p {
|
71 |
+
max-width: 100% !important;
|
72 |
+
word-wrap: break-word !important;
|
73 |
+
overflow: hidden !important;
|
74 |
+
}
|
75 |
+
|
76 |
+
/* Sidebar scrollbar styling */
|
77 |
+
.sidebar::-webkit-scrollbar {
|
78 |
+
width: 8px !important;
|
79 |
+
background: #111111 !important;
|
80 |
+
}
|
81 |
+
|
82 |
+
.sidebar::-webkit-scrollbar-track {
|
83 |
+
background: #111111 !important;
|
84 |
+
}
|
85 |
+
|
86 |
+
.sidebar::-webkit-scrollbar-thumb {
|
87 |
+
background-color: #333333 !important;
|
88 |
+
border-radius: 4px !important;
|
89 |
+
}
|
90 |
+
|
91 |
+
.sidebar::-webkit-scrollbar-thumb:hover {
|
92 |
+
background-color: #555555 !important;
|
93 |
+
}
|
94 |
+
|
95 |
+
/* Force button containers to single column - DISABLED */
|
96 |
+
/*
|
97 |
+
.sidebar .gr-button,
|
98 |
+
.sidebar button {
|
99 |
+
display: block !important;
|
100 |
+
width: 100% !important;
|
101 |
+
max-width: 100% !important;
|
102 |
+
margin: 2px 0 !important;
|
103 |
+
flex: none !important;
|
104 |
+
}
|
105 |
+
*/
|
106 |
+
|
107 |
+
/* Model button styling - DISABLED */
|
108 |
+
/*
|
109 |
+
.model-button {
|
110 |
+
background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
|
111 |
+
color: white !important;
|
112 |
+
border: 1px solid #555 !important;
|
113 |
+
margin: 3px 0 !important;
|
114 |
+
border-radius: 6px !important;
|
115 |
+
padding: 8px 12px !important;
|
116 |
+
font-weight: 600 !important;
|
117 |
+
font-size: 14px !important;
|
118 |
+
text-transform: uppercase !important;
|
119 |
+
letter-spacing: 0.3px !important;
|
120 |
+
font-family: monospace !important;
|
121 |
+
width: 100% !important;
|
122 |
+
max-width: 100% !important;
|
123 |
+
box-sizing: border-box !important;
|
124 |
+
white-space: nowrap !important;
|
125 |
+
text-overflow: ellipsis !important;
|
126 |
+
display: block !important;
|
127 |
+
cursor: pointer !important;
|
128 |
+
transition: all 0.3s ease !important;
|
129 |
+
}
|
130 |
+
|
131 |
+
.model-button:hover {
|
132 |
+
background: linear-gradient(135deg, #3a3a3a, #2e2e2e) !important;
|
133 |
+
border-color: #74b9ff !important;
|
134 |
+
color: #74b9ff !important;
|
135 |
+
transform: translateY(-1px) !important;
|
136 |
+
box-shadow: 0 2px 8px rgba(116, 185, 255, 0.2) !important;
|
137 |
+
}
|
138 |
+
*/
|
139 |
+
|
140 |
+
/*
|
141 |
+
.model-button:active {
|
142 |
+
background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
|
143 |
+
color: #5a9bd4 !important;
|
144 |
+
}
|
145 |
+
*/
|
146 |
+
|
147 |
+
/* Model stats badge */
|
148 |
+
.model-stats {
|
149 |
+
display: flex !important;
|
150 |
+
justify-content: space-between !important;
|
151 |
+
align-items: center !important;
|
152 |
+
margin-top: 8px !important;
|
153 |
+
font-size: 12px !important;
|
154 |
+
opacity: 0.8 !important;
|
155 |
+
}
|
156 |
+
|
157 |
+
.stats-badge {
|
158 |
+
background: rgba(116, 185, 255, 0.2) !important;
|
159 |
+
padding: 4px 8px !important;
|
160 |
+
border-radius: 10px !important;
|
161 |
+
font-weight: 500 !important;
|
162 |
+
font-size: 11px !important;
|
163 |
+
color: #74b9ff !important;
|
164 |
+
}
|
165 |
+
|
166 |
+
.success-indicator {
|
167 |
+
width: 8px !important;
|
168 |
+
height: 8px !important;
|
169 |
+
border-radius: 50% !important;
|
170 |
+
display: inline-block !important;
|
171 |
+
margin-right: 6px !important;
|
172 |
+
}
|
173 |
+
|
174 |
+
.success-high { background-color: #4CAF50 !important; }
|
175 |
+
.success-medium { background-color: #FF9800 !important; }
|
176 |
+
.success-low { background-color: #F44336 !important; }
|
177 |
+
|
178 |
+
/* Refresh button styling */
|
179 |
+
.refresh-button {
|
180 |
+
background: linear-gradient(135deg, #2d5aa0, #1e3f73) !important;
|
181 |
+
color: white !important;
|
182 |
+
border: 1px solid #3a6bc7 !important;
|
183 |
+
margin: 0 0 10px 0 !important;
|
184 |
+
border-radius: 5px !important;
|
185 |
+
padding: 6px 8px !important;
|
186 |
+
transition: all 0.3s ease !important;
|
187 |
+
font-weight: 500 !important;
|
188 |
+
font-size: 11px !important;
|
189 |
+
text-transform: lowercase !important;
|
190 |
+
letter-spacing: 0.1px !important;
|
191 |
+
font-family: monospace !important;
|
192 |
+
width: 100% !important;
|
193 |
+
max-width: 100% !important;
|
194 |
+
min-width: 0 !important;
|
195 |
+
box-sizing: border-box !important;
|
196 |
+
white-space: nowrap !important;
|
197 |
+
overflow: hidden !important;
|
198 |
+
text-overflow: ellipsis !important;
|
199 |
+
}
|
200 |
+
|
201 |
+
.refresh-button:hover {
|
202 |
+
background: linear-gradient(135deg, #3a6bc7, #2d5aa0) !important;
|
203 |
+
border-color: #4a7bd9 !important;
|
204 |
+
}
|
205 |
+
|
206 |
+
/* Summary button styling - distinct from model buttons */
|
207 |
+
.summary-button {
|
208 |
+
background: linear-gradient(135deg, #4a4a4a, #3e3e3e) !important;
|
209 |
+
color: white !important;
|
210 |
+
border: 2px solid #555555 !important;
|
211 |
+
margin: 0 0 15px 0 !important;
|
212 |
+
border-radius: 5px !important;
|
213 |
+
padding: 12px 10px !important;
|
214 |
+
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1) !important;
|
215 |
+
position: relative !important;
|
216 |
+
overflow: hidden !important;
|
217 |
+
box-shadow:
|
218 |
+
0 4px 15px rgba(0, 0, 0, 0.3),
|
219 |
+
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
|
220 |
+
font-weight: 600 !important;
|
221 |
+
font-size: 14px !important;
|
222 |
+
text-transform: uppercase !important;
|
223 |
+
letter-spacing: 0.3px !important;
|
224 |
+
font-family: monospace !important;
|
225 |
+
height: 60px !important;
|
226 |
+
display: flex !important;
|
227 |
+
flex-direction: column !important;
|
228 |
+
justify-content: center !important;
|
229 |
+
align-items: center !important;
|
230 |
+
line-height: 1.2 !important;
|
231 |
+
width: 100% !important;
|
232 |
+
max-width: 100% !important;
|
233 |
+
min-width: 0 !important;
|
234 |
+
box-sizing: border-box !important;
|
235 |
+
}
|
236 |
+
|
237 |
+
/* Simplified Gradio layout control */
|
238 |
+
.sidebar .gr-column,
|
239 |
+
.sidebar .gradio-column {
|
240 |
+
width: 100% !important;
|
241 |
+
}
|
242 |
+
|
243 |
+
/* Simplified Gradio targeting */
|
244 |
+
div[data-testid="column"]:has(.sidebar) {
|
245 |
+
width: 300px !important;
|
246 |
+
min-width: 300px !important;
|
247 |
+
}
|
248 |
+
|
249 |
+
/* Button container with fixed height - DISABLED */
|
250 |
+
/*
|
251 |
+
.button-container {
|
252 |
+
height: 50vh !important;
|
253 |
+
max-height: 50vh !important;
|
254 |
+
overflow-y: auto !important;
|
255 |
+
overflow-x: hidden !important;
|
256 |
+
scrollbar-width: thin !important;
|
257 |
+
scrollbar-color: #333333 #111111 !important;
|
258 |
+
width: 100% !important;
|
259 |
+
max-width: 100% !important;
|
260 |
+
box-sizing: border-box !important;
|
261 |
+
padding: 5px 0 !important;
|
262 |
+
margin-top: 10px !important;
|
263 |
+
}
|
264 |
+
*/
|
265 |
+
|
266 |
+
/* Removed simple scroll CSS - was hiding buttons */
|
267 |
+
|
268 |
+
.summary-button:hover {
|
269 |
+
background: linear-gradient(135deg, #5a5a5a, #4e4e4e) !important;
|
270 |
+
color: #74b9ff !important;
|
271 |
+
border-color: #666666 !important;
|
272 |
+
}
|
273 |
+
|
274 |
+
.summary-button:active {
|
275 |
+
background: linear-gradient(135deg, #4a4a4a, #3e3e3e) !important;
|
276 |
+
color: #5a9bd4 !important;
|
277 |
+
}
|
278 |
+
|
279 |
+
/* Regular button styling for non-model buttons */
|
280 |
+
.gr-button:not(.model-button):not(.summary-button) {
|
281 |
+
background-color: #222222 !important;
|
282 |
+
color: white !important;
|
283 |
+
border: 1px solid #444444 !important;
|
284 |
+
margin: 5px 0 !important;
|
285 |
+
border-radius: 8px !important;
|
286 |
+
transition: all 0.3s ease !important;
|
287 |
+
}
|
288 |
+
|
289 |
+
.gr-button:not(.model-button):not(.summary-button):hover {
|
290 |
+
background-color: #333333 !important;
|
291 |
+
border-color: #666666 !important;
|
292 |
+
}
|
293 |
+
|
294 |
+
/* Plot container with smooth transitions and controlled scrolling */
|
295 |
+
.plot-container {
|
296 |
+
background-color: #000000 !important;
|
297 |
+
border: none !important;
|
298 |
+
transition: opacity 0.6s ease-in-out !important;
|
299 |
+
flex: 1 1 auto !important;
|
300 |
+
min-height: 0 !important;
|
301 |
+
overflow-y: auto !important;
|
302 |
+
scrollbar-width: thin !important;
|
303 |
+
scrollbar-color: #333333 #000000 !important;
|
304 |
+
}
|
305 |
+
|
306 |
+
/* Custom scrollbar for plot container */
|
307 |
+
.plot-container::-webkit-scrollbar {
|
308 |
+
width: 8px !important;
|
309 |
+
background: #000000 !important;
|
310 |
+
}
|
311 |
+
|
312 |
+
.plot-container::-webkit-scrollbar-track {
|
313 |
+
background: #000000 !important;
|
314 |
+
}
|
315 |
+
|
316 |
+
.plot-container::-webkit-scrollbar-thumb {
|
317 |
+
background-color: #333333 !important;
|
318 |
+
border-radius: 4px !important;
|
319 |
+
}
|
320 |
+
|
321 |
+
.plot-container::-webkit-scrollbar-thumb:hover {
|
322 |
+
background-color: #555555 !important;
|
323 |
+
}
|
324 |
+
|
325 |
+
/* Gradio plot component styling */
|
326 |
+
.gr-plot {
|
327 |
+
background-color: #000000 !important;
|
328 |
+
transition: opacity 0.6s ease-in-out !important;
|
329 |
+
}
|
330 |
+
|
331 |
+
.gr-plot .gradio-plot {
|
332 |
+
background-color: #000000 !important;
|
333 |
+
transition: opacity 0.6s ease-in-out !important;
|
334 |
+
}
|
335 |
+
|
336 |
+
.gr-plot img {
|
337 |
+
transition: opacity 0.6s ease-in-out !important;
|
338 |
+
}
|
339 |
+
|
340 |
+
/* Target the plot wrapper */
|
341 |
+
div[data-testid="plot"] {
|
342 |
+
background-color: #000000 !important;
|
343 |
+
}
|
344 |
+
|
345 |
+
/* Target all possible plot containers */
|
346 |
+
.plot-container img,
|
347 |
+
.gr-plot img,
|
348 |
+
.gradio-plot img {
|
349 |
+
background-color: #000000 !important;
|
350 |
+
}
|
351 |
+
|
352 |
+
/* Ensure plot area background */
|
353 |
+
.gr-plot > div,
|
354 |
+
.plot-container > div {
|
355 |
+
background-color: #000000 !important;
|
356 |
+
}
|
357 |
+
|
358 |
+
/* Prevent white flash during plot updates */
|
359 |
+
.plot-container::before {
|
360 |
+
content: "";
|
361 |
+
position: absolute;
|
362 |
+
top: 0;
|
363 |
+
left: 0;
|
364 |
+
right: 0;
|
365 |
+
bottom: 0;
|
366 |
+
background-color: #000000;
|
367 |
+
z-index: -1;
|
368 |
+
}
|
369 |
+
|
370 |
+
/* Force all plot elements to have black background */
|
371 |
+
.plot-container *,
|
372 |
+
.gr-plot *,
|
373 |
+
div[data-testid="plot"] * {
|
374 |
+
background-color: #000000 !important;
|
375 |
+
}
|
376 |
+
|
377 |
+
/* Override any white backgrounds in matplotlib */
|
378 |
+
.plot-container canvas,
|
379 |
+
.gr-plot canvas {
|
380 |
+
background-color: #000000 !important;
|
381 |
+
}
|
382 |
+
|
383 |
+
/* Text elements */
|
384 |
+
h1, h2, h3, p, .markdown {
|
385 |
+
color: white !important;
|
386 |
+
}
|
387 |
+
|
388 |
+
/* Sidebar header enhancement */
|
389 |
+
.sidebar h1 {
|
390 |
+
background: linear-gradient(45deg, #74b9ff, #a29bfe) !important;
|
391 |
+
-webkit-background-clip: text !important;
|
392 |
+
-webkit-text-fill-color: transparent !important;
|
393 |
+
background-clip: text !important;
|
394 |
+
text-align: center !important;
|
395 |
+
margin-bottom: 15px !important;
|
396 |
+
font-size: 28px !important;
|
397 |
+
font-weight: 700 !important;
|
398 |
+
font-family: monospace !important;
|
399 |
+
}
|
400 |
+
|
401 |
+
/* Sidebar description text */
|
402 |
+
.sidebar p {
|
403 |
+
text-align: center !important;
|
404 |
+
margin-bottom: 20px !important;
|
405 |
+
line-height: 1.5 !important;
|
406 |
+
font-size: 14px !important;
|
407 |
+
font-family: monospace !important;
|
408 |
+
}
|
409 |
+
|
410 |
+
/* CI Links styling */
|
411 |
+
.sidebar a {
|
412 |
+
color: #74b9ff !important;
|
413 |
+
text-decoration: none !important;
|
414 |
+
font-weight: 500 !important;
|
415 |
+
font-family: monospace !important;
|
416 |
+
transition: color 0.3s ease !important;
|
417 |
+
}
|
418 |
+
|
419 |
+
.sidebar a:hover {
|
420 |
+
color: #a29bfe !important;
|
421 |
+
text-decoration: underline !important;
|
422 |
+
}
|
423 |
+
|
424 |
+
.sidebar strong {
|
425 |
+
color: #74b9ff !important;
|
426 |
+
font-weight: 600 !important;
|
427 |
+
font-family: monospace !important;
|
428 |
+
}
|
429 |
+
|
430 |
+
.sidebar em {
|
431 |
+
color: #a29bfe !important;
|
432 |
+
font-style: normal !important;
|
433 |
+
opacity: 0.9 !important;
|
434 |
+
font-family: monospace !important;
|
435 |
+
}
|
436 |
+
|
437 |
+
/* Remove all borders globally */
|
438 |
+
* {
|
439 |
+
border-color: transparent !important;
|
440 |
+
}
|
441 |
+
|
442 |
+
/* Main content area */
|
443 |
+
.main-content {
|
444 |
+
background-color: #000000 !important;
|
445 |
+
padding: 20px 20px 40px 20px !important;
|
446 |
+
margin-left: 300px !important;
|
447 |
+
height: 100vh !important;
|
448 |
+
overflow-y: auto !important;
|
449 |
+
box-sizing: border-box !important;
|
450 |
+
display: flex !important;
|
451 |
+
flex-direction: column !important;
|
452 |
+
}
|
453 |
+
|
454 |
+
/* Custom scrollbar for main content */
|
455 |
+
.main-content {
|
456 |
+
scrollbar-width: thin !important;
|
457 |
+
scrollbar-color: #333333 #000000 !important;
|
458 |
+
}
|
459 |
+
|
460 |
+
.main-content::-webkit-scrollbar {
|
461 |
+
width: 8px !important;
|
462 |
+
background: #000000 !important;
|
463 |
+
}
|
464 |
+
|
465 |
+
.main-content::-webkit-scrollbar-track {
|
466 |
+
background: #000000 !important;
|
467 |
+
}
|
468 |
+
|
469 |
+
.main-content::-webkit-scrollbar-thumb {
|
470 |
+
background-color: #333333 !important;
|
471 |
+
border-radius: 4px !important;
|
472 |
+
}
|
473 |
+
|
474 |
+
.main-content::-webkit-scrollbar-thumb:hover {
|
475 |
+
background-color: #555555 !important;
|
476 |
+
}
|
477 |
+
|
478 |
+
/* Failed tests display - seamless appearance with constrained height */
|
479 |
+
.failed-tests textarea {
|
480 |
+
background-color: #000000 !important;
|
481 |
+
color: #FFFFFF !important;
|
482 |
+
font-family: monospace !important;
|
483 |
+
font-size: 14px !important;
|
484 |
+
border: none !important;
|
485 |
+
padding: 10px !important;
|
486 |
+
outline: none !important;
|
487 |
+
line-height: 1.4 !important;
|
488 |
+
height: 180px !important;
|
489 |
+
max-height: 180px !important;
|
490 |
+
min-height: 180px !important;
|
491 |
+
overflow-y: auto !important;
|
492 |
+
resize: none !important;
|
493 |
+
scrollbar-width: thin !important;
|
494 |
+
scrollbar-color: #333333 #000000 !important;
|
495 |
+
scroll-behavior: auto;
|
496 |
+
transition: opacity 0.5s ease-in-out !important;
|
497 |
+
}
|
498 |
+
|
499 |
+
/* WebKit scrollbar styling for failed tests */
|
500 |
+
.failed-tests textarea::-webkit-scrollbar {
|
501 |
+
width: 8px !important;
|
502 |
+
}
|
503 |
+
|
504 |
+
.failed-tests textarea::-webkit-scrollbar-track {
|
505 |
+
background: #000000 !important;
|
506 |
+
}
|
507 |
+
|
508 |
+
.failed-tests textarea::-webkit-scrollbar-thumb {
|
509 |
+
background-color: #333333 !important;
|
510 |
+
border-radius: 4px !important;
|
511 |
+
}
|
512 |
+
|
513 |
+
.failed-tests textarea::-webkit-scrollbar-thumb:hover {
|
514 |
+
background-color: #555555 !important;
|
515 |
+
}
|
516 |
+
|
517 |
+
/* Prevent white flash in text boxes during updates */
|
518 |
+
.failed-tests::before {
|
519 |
+
content: "";
|
520 |
+
position: absolute;
|
521 |
+
top: 0;
|
522 |
+
left: 0;
|
523 |
+
right: 0;
|
524 |
+
bottom: 0;
|
525 |
+
background-color: #000000;
|
526 |
+
z-index: -1;
|
527 |
+
}
|
528 |
+
|
529 |
+
.failed-tests {
|
530 |
+
background-color: #000000 !important;
|
531 |
+
height: 200px !important;
|
532 |
+
max-height: 200px !important;
|
533 |
+
min-height: 200px !important;
|
534 |
+
position: relative;
|
535 |
+
transition: opacity 0.5s ease-in-out !important;
|
536 |
+
flex-shrink: 0 !important;
|
537 |
+
}
|
538 |
+
|
539 |
+
.failed-tests .gr-textbox {
|
540 |
+
background-color: #000000 !important;
|
541 |
+
border: none !important;
|
542 |
+
height: 180px !important;
|
543 |
+
max-height: 180px !important;
|
544 |
+
min-height: 180px !important;
|
545 |
+
transition: opacity 0.5s ease-in-out !important;
|
546 |
+
}
|
547 |
+
|
548 |
+
/* Force all textbox elements to have black background */
|
549 |
+
.failed-tests *,
|
550 |
+
.failed-tests .gr-textbox *,
|
551 |
+
.failed-tests textarea * {
|
552 |
+
background-color: #000000 !important;
|
553 |
+
}
|
554 |
+
|
555 |
+
/* Summary display styling */
|
556 |
+
.summary-display textarea {
|
557 |
+
background-color: #000000 !important;
|
558 |
+
color: #FFFFFF !important;
|
559 |
+
font-family: monospace !important;
|
560 |
+
font-size: 24px !important;
|
561 |
+
border: none !important;
|
562 |
+
padding: 20px !important;
|
563 |
+
outline: none !important;
|
564 |
+
line-height: 2 !important;
|
565 |
+
text-align: right !important;
|
566 |
+
resize: none !important;
|
567 |
+
}
|
568 |
+
|
569 |
+
.summary-display {
|
570 |
+
background-color: #000000 !important;
|
571 |
+
}
|
572 |
+
|
573 |
+
/* Detail view layout */
|
574 |
+
.detail-view {
|
575 |
+
display: flex !important;
|
576 |
+
flex-direction: column !important;
|
577 |
+
height: 100% !important;
|
578 |
+
min-height: 0 !important;
|
579 |
+
}
|
580 |
+
|
581 |
+
/* JavaScript to reset scroll position */
|
582 |
+
.scroll-reset {
|
583 |
+
animation: resetScroll 0.1s ease;
|
584 |
+
}
|
585 |
+
|
586 |
+
@keyframes resetScroll {
|
587 |
+
0% { scroll-behavior: auto; }
|
588 |
+
100% { scroll-behavior: auto; }
|
589 |
+
}
|