import matplotlib.pyplot as plt import pandas as pd from utils import generate_underlined_line from data import extract_model_data # Figure dimensions FIGURE_WIDTH_DUAL = 18 FIGURE_HEIGHT_DUAL = 9 # Colors COLORS = { 'passed': '#4CAF50', # Medium green 'failed': '#E53E3E', # More red 'skipped': '#FFD54F', # Medium yellow 'error': '#8B0000' # Dark red } # Styling constants BLACK = '#000000' LABEL_COLOR = '#AAAAAA' TITLE_COLOR = '#FFFFFF' # Font sizes DEVICE_TITLE_FONT_SIZE = 28 # Layout constants SEPARATOR_LINE_Y_END = 0.85 SUBPLOT_TOP = 0.85 SUBPLOT_WSPACE = 0.4 PIE_START_ANGLE = 90 BORDER_LINE_WIDTH = 0.5 SEPARATOR_ALPHA = 0.5 SEPARATOR_LINE_WIDTH = 1 DEVICE_TITLE_PAD = 2 MODEL_TITLE_Y = 1 # Processing constants MAX_FAILURE_ITEMS = 10 def _process_failure_category(failures_obj: dict, category: str, info_lines: list) -> None: """Process a single failure category (multi or single) and add to info_lines.""" if category in failures_obj and failures_obj[category]: info_lines.append(generate_underlined_line(f"{category.title()} GPU failure details:")) if isinstance(failures_obj[category], list): # Handle list of failures (could be strings or dicts) for i, failure in enumerate(failures_obj[category][:MAX_FAILURE_ITEMS]): if isinstance(failure, dict): # Extract meaningful info from dict (e.g., test name, line, etc.) failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure)))) info_lines.append(f" {i+1}. {failure_str}") else: info_lines.append(f" {i+1}. {str(failure)}") if len(failures_obj[category]) > MAX_FAILURE_ITEMS: remaining = len(failures_obj[category]) - MAX_FAILURE_ITEMS info_lines.append(f"... and {remaining} more") else: info_lines.append(str(failures_obj[category])) info_lines.append("") def extract_failure_info(failures_obj, device: str, multi_count: int, single_count: int) -> str: """Extract failure information from failures object.""" if (not failures_obj or pd.isna(failures_obj)) and multi_count == 0 and single_count == 0: return f"No failures on {device}" info_lines = [] # Add counts summary if multi_count > 0 or single_count > 0: info_lines.append(generate_underlined_line(f"Failure Summary for {device}:")) if multi_count > 0: info_lines.append(f"Multi GPU failures: {multi_count}") if single_count > 0: info_lines.append(f"Single GPU failures: {single_count}") info_lines.append("") # Try to extract detailed failure information try: if isinstance(failures_obj, dict): _process_failure_category(failures_obj, 'multi', info_lines) _process_failure_category(failures_obj, 'single', info_lines) return "\n".join(info_lines) if info_lines else f"No detailed failure info for {device}" except Exception as e: if multi_count > 0 or single_count > 0: error_msg = (f"Failures detected on {device} (Multi: {multi_count}, Single: {single_count})\n" f"Details unavailable: {str(e)}") return error_msg return f"Error processing failure info for {device}: {str(e)}" def _create_pie_chart(ax: plt.Axes, device_label: str, filtered_stats: dict) -> None: """Create a pie chart for device statistics.""" if not filtered_stats: ax.text(0.5, 0.5, 'No test results', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes, fontsize=14, color='#888888', fontfamily='monospace', weight='normal') ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='bold', pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace') ax.axis('off') return chart_colors = [COLORS[category] for category in filtered_stats.keys()] # Create minimal pie chart - full pie, no donut effect wedges, texts, autotexts = ax.pie( filtered_stats.values(), labels=[label.lower() for label in filtered_stats.keys()], # Lowercase for minimal look colors=chart_colors, autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}', startangle=PIE_START_ANGLE, explode=None, # No separation shadow=False, wedgeprops=dict(edgecolor='#1a1a1a', linewidth=BORDER_LINE_WIDTH), # Minimal borders textprops={'fontsize': 12, 'weight': 'normal', 'color': LABEL_COLOR, 'fontfamily': 'monospace'} ) # Enhanced percentage text styling for better readability for autotext in autotexts: autotext.set_color(BLACK) # Black text for better contrast autotext.set_weight('bold') autotext.set_fontsize(14) autotext.set_fontfamily('monospace') # Minimal category labels for text in texts: text.set_color(LABEL_COLOR) text.set_weight('normal') text.set_fontsize(13) text.set_fontfamily('monospace') # Device label closer to chart and bigger ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='normal', pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace') def plot_model_stats(df: pd.DataFrame, model_name: str) -> tuple[plt.Figure, str, str]: """Draws pie charts of model's passed, failed, skipped, and error stats for AMD and NVIDIA.""" # Handle case where the dataframe is empty or the model name could not be found in it if df.empty or model_name not in df.index: # Create empty stats for both devices amd_filtered = {} nvidia_filtered = {} failed_multi_amd = failed_single_amd = failed_multi_nvidia = failed_single_nvidia = 0 failures_amd = failures_nvidia = {} else: row = df.loc[model_name] # Extract and process model data amd_stats, nvidia_stats, failed_multi_amd, failed_single_amd, failed_multi_nvidia, failed_single_nvidia = \ extract_model_data(row) # Filter out categories with 0 values for cleaner visualization amd_filtered = {k: v for k, v in amd_stats.items() if v > 0} nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0} # Generate failure info directly from dataframe failures_amd = row.get('failures_amd', {}) failures_nvidia = row.get('failures_nvidia', {}) # Always create figure with two subplots side by side with padding fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(FIGURE_WIDTH_DUAL, FIGURE_HEIGHT_DUAL), facecolor=BLACK) ax1.set_facecolor(BLACK) ax2.set_facecolor(BLACK) # Create both pie charts with device labels _create_pie_chart(ax1, "amd", amd_filtered) _create_pie_chart(ax2, "nvidia", nvidia_filtered) # Add subtle separation line between charts - stops at device labels level line_x = 0.5 fig.add_artist(plt.Line2D([line_x, line_x], [0.0, SEPARATOR_LINE_Y_END], color='#333333', linewidth=SEPARATOR_LINE_WIDTH, alpha=SEPARATOR_ALPHA, transform=fig.transFigure)) # Add central shared title for model name fig.suptitle(f'{model_name.lower()}', fontsize=32, weight='bold', color='#CCCCCC', fontfamily='monospace', y=MODEL_TITLE_Y) # Clean layout with padding and space for central title plt.tight_layout() plt.subplots_adjust(top=SUBPLOT_TOP, wspace=SUBPLOT_WSPACE) amd_failed_info = extract_failure_info(failures_amd, 'AMD', failed_multi_amd, failed_single_amd) nvidia_failed_info = extract_failure_info(failures_nvidia, 'NVIDIA', failed_multi_nvidia, failed_single_nvidia) return fig, amd_failed_info, nvidia_failed_info