File size: 6,940 Bytes
39f55d8
c4eb26f
 
 
 
6d83417
c4eb26f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39f55d8
 
 
 
 
 
 
 
 
 
 
 
9b4be67
39f55d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645663e
668d89d
 
 
 
 
 
 
 
 
 
645663e
 
 
5b85a92
668d89d
5b85a92
9e299ab
 
 
 
 
ad8d6d5
39f55d8
 
 
 
 
9e299ab
 
39f55d8
c4eb26f
ad8d6d5
9e299ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39f55d8
ad8d6d5
9e299ab
 
 
 
ad8d6d5
 
9b4be67
c4eb26f
d3923d5
acba7af
 
c4eb26f
acba7af
c4eb26f
 
d3923d5
06f9709
acba7af
 
ce27bb4
c4eb26f
 
d3923d5
c4eb26f
 
acba7af
b3818eb
06f9709
9e299ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# old code
# import gradio as gr
# import torch

# model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')
# Define the face detector function 
# def detect_faces(image):
#    # Loading in yolov5s - you can switch to larger models such as yolov5m or yolov5l, or smaller such as yolov5n
#     results = model(image)

#     return results.render()[0]

# # Create a Gradio interface
# iface = gr.Interface(fn=detect_faces, inputs=gr.Image(source="webcam", tool =None), outputs="image")

# # Launch the interface
# iface.launch(debug=True)

# demo = gr.TabbedInterface([img_demo, vid_demo], ["Image", "Video"])

# if __name__ == "__main__":
#     demo.launch()
# from IPython.display import clear_output
# import os, urllib.request
# import subprocess
# from roboflow import Roboflow
# import json
# from time import sleep
# from PIL import Image, ImageDraw
# import io
# import base64
# import requests
# from os.path import exists
# import sys, re, glob

# model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')
# rf = Roboflow(api_key="affmrRA3zyr34kAQF3sJ")
# project = rf.workspace().project("ecosmart-pxc0t")
# dataset = project.version(4).model

# def detect_video(video):
#     HOME = os.path.expanduser("~")
#     pathDoneCMD = f'{HOME}/doneCMD.sh'
#     if not os.path.exists(f"{HOME}/.ipython/ttmg.py"):
#         hCode = "https://raw.githubusercontent.com/yunooooo/gcct/master/res/ttmg.py"
#         urllib.request.urlretrieve(hCode, f"{HOME}/.ipython/ttmg.py")
    
#     from ttmg import (
#         loadingAn,
#         textAn,
#     )

#     os.chdir("/content/")
#     os.makedirs("videos_to_infer", exist_ok=True)
#     os.makedirs("inferred_videos", exist_ok=True)
#     os.chdir("videos_to_infer")
#     os.environ['inputFile'] = video.name
#     command = ['ffmpeg', '-hide_banner', '-loglevel', 'error', '-i', input_file, '-vf', 'fps=2', output_pattern]
#     subprocess.run(command)
    
#     subprocess.run(['pip', 'install', 'roboflow'])
#     install_roboflow()
#     model = version.model
#     print(model)

#     file_path = "/content/videos_to_infer/"
#     extention = ".png"
#     globbed_files = sorted(glob.glob(file_path + '*' + extention))
#     print(globbed_files)
#     for image in globbed_files:
#     # INFERENCE
#     predictions = model.predict(image).json()['predictions']
#     newly_rendered_image = Image.open(image)
    
#       # RENDER
#       # for each detection, create a crop and convert into CLIP encoding
#     print(predictions)
#     for prediction in predictions:
#           # rip bounding box coordinates from current detection
#           # note: infer returns center points of box as (x,y) and width, height
#           # ----- but pillow crop requires the top left and bottom right points to crop
#         x0 = prediction['x'] - prediction['width'] / 2
#         x1 = prediction['x'] + prediction['width'] / 2
#         y0 = prediction['y'] - prediction['height'] / 2
#         y1 = prediction['y'] + prediction['height'] / 2
#         box = (x0, y0, x1, y1)
    
#         newly_rendered_image = draw_boxes(box, x0, y0, newly_rendered_image, prediction['class'])
    
#       # WRITE
#     save_with_bbox_renders(newly_rendered_image)

#     # Run ffmpeg command
#     subprocess.run(['ffmpeg', '-r', '8', '-s', '1920x1080', '-i', '/content/inferred_videos/YOUR_VIDEO_FILE_out%04d.png', '-vcodec', 'libx264', '-crf', '25', '-pix_fmt', 'yuv420p', 'test.mp4'])
#     # Call the function to execute the commands
#     execute_commands()


    
# def draw_boxes(box, x0, y0, img, class_name):
#     bbox = ImageDraw.Draw(img)

#     bbox.rectangle(box, outline =color_map[class_name], width=5)
#     bbox.text((x0, y0), class_name, fill='black', anchor='mm')

#     return img

# def save_with_bbox_renders(img):
#     file_name = os.path.basename(img.filename)
#     img.save('/content/inferred_videos/' + file_name)


    
# loadingAn(name="lds")
# textAn("Installing Dependencies...", ty='twg')
# os.system('pip install git+git://github.com/AWConant/jikanpy.git')
# os.system('add-apt-repository -y ppa:jonathonf/ffmpeg-4')
# os.system('apt-get update')
# os.system('apt install mediainfo')
# os.system('apt-get install ffmpeg')
# clear_output()
# print('Installation finished.')

# Define the face detector function


import gradio as gr
import torch
import cv2
import os

# Load the model
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')

def detect_image(image):
    results = model(image)
    return results.render()[0]

def detect_video(video_path):
    video = cv2.VideoCapture(video_path)
    frame_rate = video.get(cv2.CAP_PROP_FPS)
    
    # Create a directory to store the frames
    frames_dir = 'frames'
    os.makedirs(frames_dir, exist_ok=True)

    frame_count = 0
    while True:
        success, frame = video.read()
        if not success:
            break
        frame_output_path = os.path.join(frames_dir, f'frame_{frame_count:04d}.jpg')
        cv2.imwrite(frame_output_path, frame)
        frame_count += 1

    video.release()
    cv2.destroyAllWindows()

    # Process the frames with object detection and save the results
    results_dir = 'results'
    os.makedirs(results_dir, exist_ok=True)

    for i in range(frame_count):
        frame_path = os.path.join(frames_dir, f'frame_{i:04d}.jpg')
        frame = cv2.imread(frame_path)
        results = model(frame)
        results_output_path = os.path.join(results_dir, f'results_{i:04d}.jpg')
        cv2.imwrite(results_output_path, results.render()[0])

    # Create the output video from the processed frames
    frame_files = sorted(os.listdir(results_dir))
    frame_path = os.path.join(results_dir, frame_files[0])
    frame = cv2.imread(frame_path)
    height, width, _ = frame.shape

    video_output_path = 'output_video.mp4'  # Replace with your desired output video path
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # You can change the codec as needed
    video_writer = cv2.VideoWriter(video_output_path, fourcc, frame_rate, (width, height))

    for frame_file in frame_files:
        frame_path = os.path.join(results_dir, frame_file)
        frame = cv2.imread(frame_path)
        video_writer.write(frame)

    video_writer.release()

    # Clean up the temporary directories
    os.rmdir(frames_dir)
    os.rmdir(results_dir)

    return video_output_path


# Create Gradio interfaces for different modes
img_interface = gr.Interface(
    fn=detect_image,
    inputs=gr.inputs.Image(source="upload"),
    outputs="image",
    title="Image"
)

vid_interface = gr.Interface(
    fn=detect_video,
    inputs=gr.inputs.Video(source="upload"),
    outputs="video",
    title="Video"
)
# Create a list of interfaces
interfaces = [img_interface, vid_interface]

# Create the tabbed interface
tabbed_interface = gr.TabbedInterface(interfaces, ["Image", "Video"])

# Launch the tabbed interface 
tabbed_interface.launch(debug=True)