File size: 542 Bytes
b3818eb
 
 
2e0ea1a
 
 
b3818eb
 
da8e3ad
 
 
b3818eb
da8e3ad
b3818eb
 
2e0ea1a
 
 
 
 
b3818eb
 
fd73203
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import gradio as gr
import torch

def snap(video):
    return [video]

model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')
# Define the face detector function
# def detect_faces(image):
#    # Loading in yolov5s - you can switch to larger models such as yolov5m or yolov5l, or smaller such as yolov5n
#     results = model(image)

#     return results.render()[0]

# Create a Gradio interface
iface = gr.Interface(
    snap,
    [gr.Video(source="webcam")],
    ["video"],
)

# Launch the interface
iface.launch(debug=True)