EcoSmart / app.py
rosebe's picture
Update app.py
ad8d6d5
raw
history blame
6.55 kB
# old code
# import gradio as gr
# import torch
# model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')
# Define the face detector function
# def detect_faces(image):
# # Loading in yolov5s - you can switch to larger models such as yolov5m or yolov5l, or smaller such as yolov5n
# results = model(image)
# return results.render()[0]
# # Create a Gradio interface
# iface = gr.Interface(fn=detect_faces, inputs=gr.Image(source="webcam", tool =None), outputs="image")
# # Launch the interface
# iface.launch(debug=True)
# demo = gr.TabbedInterface([img_demo, vid_demo], ["Image", "Video"])
# if __name__ == "__main__":
# demo.launch()
# from IPython.display import clear_output
# import os, urllib.request
# import subprocess
# from roboflow import Roboflow
# import json
# from time import sleep
# from PIL import Image, ImageDraw
# import io
# import base64
# import requests
# from os.path import exists
# import sys, re, glob
# model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')
# rf = Roboflow(api_key="affmrRA3zyr34kAQF3sJ")
# project = rf.workspace().project("ecosmart-pxc0t")
# dataset = project.version(4).model
# def detect_video(video):
# HOME = os.path.expanduser("~")
# pathDoneCMD = f'{HOME}/doneCMD.sh'
# if not os.path.exists(f"{HOME}/.ipython/ttmg.py"):
# hCode = "https://raw.githubusercontent.com/yunooooo/gcct/master/res/ttmg.py"
# urllib.request.urlretrieve(hCode, f"{HOME}/.ipython/ttmg.py")
# from ttmg import (
# loadingAn,
# textAn,
# )
# os.chdir("/content/")
# os.makedirs("videos_to_infer", exist_ok=True)
# os.makedirs("inferred_videos", exist_ok=True)
# os.chdir("videos_to_infer")
# os.environ['inputFile'] = video.name
# command = ['ffmpeg', '-hide_banner', '-loglevel', 'error', '-i', input_file, '-vf', 'fps=2', output_pattern]
# subprocess.run(command)
# subprocess.run(['pip', 'install', 'roboflow'])
# install_roboflow()
# model = version.model
# print(model)
# file_path = "/content/videos_to_infer/"
# extention = ".png"
# globbed_files = sorted(glob.glob(file_path + '*' + extention))
# print(globbed_files)
# for image in globbed_files:
# # INFERENCE
# predictions = model.predict(image).json()['predictions']
# newly_rendered_image = Image.open(image)
# # RENDER
# # for each detection, create a crop and convert into CLIP encoding
# print(predictions)
# for prediction in predictions:
# # rip bounding box coordinates from current detection
# # note: infer returns center points of box as (x,y) and width, height
# # ----- but pillow crop requires the top left and bottom right points to crop
# x0 = prediction['x'] - prediction['width'] / 2
# x1 = prediction['x'] + prediction['width'] / 2
# y0 = prediction['y'] - prediction['height'] / 2
# y1 = prediction['y'] + prediction['height'] / 2
# box = (x0, y0, x1, y1)
# newly_rendered_image = draw_boxes(box, x0, y0, newly_rendered_image, prediction['class'])
# # WRITE
# save_with_bbox_renders(newly_rendered_image)
# # Run ffmpeg command
# subprocess.run(['ffmpeg', '-r', '8', '-s', '1920x1080', '-i', '/content/inferred_videos/YOUR_VIDEO_FILE_out%04d.png', '-vcodec', 'libx264', '-crf', '25', '-pix_fmt', 'yuv420p', 'test.mp4'])
# # Call the function to execute the commands
# execute_commands()
# def draw_boxes(box, x0, y0, img, class_name):
# bbox = ImageDraw.Draw(img)
# bbox.rectangle(box, outline =color_map[class_name], width=5)
# bbox.text((x0, y0), class_name, fill='black', anchor='mm')
# return img
# def save_with_bbox_renders(img):
# file_name = os.path.basename(img.filename)
# img.save('/content/inferred_videos/' + file_name)
# loadingAn(name="lds")
# textAn("Installing Dependencies...", ty='twg')
# os.system('pip install git+git://github.com/AWConant/jikanpy.git')
# os.system('add-apt-repository -y ppa:jonathonf/ffmpeg-4')
# os.system('apt-get update')
# os.system('apt install mediainfo')
# os.system('apt-get install ffmpeg')
# clear_output()
# print('Installation finished.')
# Define the face detector function
import gradio as gr
import torch
import cv2
import os
# Load the model
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')
def detect_image(image):
results = model(image)
return results.render()[0]
def detect_video(video_path):
video = cv2.VideoCapture(video_path)
frame_rate = video.get(cv2.CAP_PROP_FPS) # Get the frame rate of the input video
# Get the dimensions of the video frames
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Create a VideoWriter object to write the output video
video_output_path = 'output_video.mp4' # Replace with your desired output video path
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # You can change the codec as needed
video_writer = cv2.VideoWriter(video_output_path, fourcc, frame_rate, (width, height))
frame_count = 0
while True:
success, frame = video.read()
if not success:
break
# Process the frame using your model
results = model(frame)
# Access the first detection result
detection_result = results.pandas().xyxy.iloc[0]
# Extract the bounding box coordinates
xmin, ymin, xmax, ymax = detection_result["xmin"], detection_result["ymin"], detection_result["xmax"], detection_result["ymax"]
# Draw the bounding box on the frame
frame = cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
# Write the frame to the output video
video_writer.write(frame)
frame_count += 1
video.release()
video_writer.release()
return video_output_path
# Create Gradio interfaces for different modes
img_interface = gr.Interface(
fn=detect_image,
inputs=gr.inputs.Image(source="upload"),
outputs="image",
title="Image"
)
vid_interface = gr.Interface(
fn=detect_video,
inputs=gr.inputs.Video(source="upload"),
outputs="video",
title="Video"
)
# Create a list of interfaces
interfaces = [img_interface, vid_interface]
# Create the tabbed interface
tabbed_interface = gr.TabbedInterface(interfaces, ["Image", "Video"])
# Launch the tabbed interface
tabbed_interface.launch(debug=True)