# import gradio as gr # import torch # model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') # # Define the face detector function # def detect_faces(image): # # Loading in yolov5s - you can switch to larger models such as yolov5m or yolov5l, or smaller such as yolov5n # results = model(image) # return results.render()[0] # # Create a Gradio interface # iface = gr.Interface(fn=detect_faces, inputs="image", outputs="image") # # Launch the interface # iface.launch(debug=True) import gradio as gr def snap(image, video): return [image, video] demo = gr.Interface( snap, [gr.Image(source="webcam", tool=None), gr.Video(source="webcam")], ["image", "video"], ) if __name__ == "__main__": demo.launch()