File size: 1,010 Bytes
cb05be2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import torch
from transformers import AutoProcessor, AutoModel, TextIteratorStreamer
class FullSequenceStreamer(TextIteratorStreamer):
def __init__(self, tokenizer, **kwargs):
super().__init__(tokenizer, **kwargs)
def put(self, value, stream_end=False):
# Assume full token_ids are passed in every time
decoded = self.tokenizer.batch_decode(value, **self.decode_kwargs)
self.text_queue.put(decoded)
if stream_end:
self.text_queue.put(self.stop_signal, timeout=self.timeout)
def end(self):
self.text_queue.put(self.stop_signal, timeout=self.timeout)
def get_model(device):
model_name = "rp-yu/Dimple-7B"
processor = AutoProcessor.from_pretrained(
model_name,
trust_remote_code=True
)
model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
model = model.eval()
model = model.to(device)
return model, processor
|