File size: 8,413 Bytes
513afb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import pandas as pd
import tarfile
import urllib.request


DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/"
HOUSING_PATH = os.path.join("datasets", "housing")
HOUSING_URL = DOWNLOAD_ROOT + "datasets/housing/housing.tgz"

def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):
    if not os.path.isdir(housing_path):
        os.makedirs(housing_path)
    tgz_path = os.path.join(housing_path, "housing.tgz")
    urllib.request.urlretrieve(housing_url, tgz_path)
    housing_tgz = tarfile.open(tgz_path)
    housing_tgz.extractall(path=housing_path)
    housing_tgz.close()



def load_housing_data(housing_path=HOUSING_PATH):
    csv_path = os.path.join(housing_path, "housing.csv")
    return pd.read_csv(csv_path)


#1. Download the data

fetch_housing_data()

housing_pd = load_housing_data()
housing_pd.head()

## tentatively drop categorical feature
housing = housing_pd.drop('ocean_proximity', axis=1)
housing



#2. Prepare the Data for Machine Learning Algorithms
## 1. split data to get train and test set
from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10)

## 2. clean the missing values
train_set_clean = train_set.dropna(subset=["total_bedrooms"])
train_set_clean

## 2. derive training features and training labels 
train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y
train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set


## 4. scale the numeric features in training set
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler() ## define the transformer
scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset

train_features_normalized = scaler.transform(train_features)
train_features_normalized

#3. Training ML model on the Training Set

from sklearn.linear_model import LinearRegression ## import the LinearRegression Function
lin_reg = LinearRegression() ## Initialize the class
lin_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning



### visualize the data
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
    path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
    print("Saving figure", fig_id, ' to ',path)
    if tight_layout:
        plt.tight_layout()
    plt.savefig(path, format=fig_extension, dpi=resolution)
    
PROJECT_ROOT_DIR='./'
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images")
os.makedirs(IMAGES_PATH, exist_ok=True)

images_path = os.path.join(PROJECT_ROOT_DIR, "images", "end_to_end_project")
os.makedirs(images_path, exist_ok=True)
DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/"
filename = "california.png"
print("Downloading", filename)
url = DOWNLOAD_ROOT + "images/end_to_end_project/" + filename
urllib.request.urlretrieve(url, os.path.join(images_path, filename))


### written by Jie
def draw_map_customize(longitude,latitude, fig_id='test',fig_extension='png' ):
    import matplotlib.image as mpimg
    california_img=mpimg.imread(os.path.join(images_path, filename))
    ax = housing.plot(kind="scatter", x="longitude", y="latitude", figsize=(10,7),
                      s=housing['population']/100, label="Population",
                      c="median_house_value", cmap=plt.get_cmap("jet"),
                      colorbar=False, alpha=0.4)
    plt.imshow(california_img, extent=[-124.55, -113.80, 32.45, 42.05], alpha=0.5,
               cmap=plt.get_cmap("jet"))
    plt.ylabel("Latitude", fontsize=18)
    plt.xlabel("Longitude", fontsize=18)

    plt.xticks(fontsize=18, rotation=0)
    plt.yticks(fontsize=18, rotation=0)


    plt.plot(longitude,latitude, "ro", alpha=0.7, marker=r'$\clubsuit$', markersize=30)

    plt.annotate("Your location is here", xy=(longitude,latitude), xytext=(longitude+1,latitude+1), fontsize=20,
            arrowprops=dict(arrowstyle="->"))
    
    
    prices = housing["median_house_value"]
    tick_values = np.linspace(prices.min(), prices.max(), 11)
    cbar = plt.colorbar(ticks=tick_values/prices.max())
    cbar.ax.set_yticklabels(["$%dk"%(round(v/1000)) for v in tick_values], fontsize=14)
    cbar.set_label('Median House Value', fontsize=16)
    
    plt.legend(fontsize=16)
    save_fig(fig_id)
    #plt.show()
    
    path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
    return path



def get_sample_data(num_data):
    sample_data = []
    for i in range(num_data):
      samp = housing.sample(1)
      longitude = float(samp['longitude'].values[0])
      latitude = float(samp['latitude'].values[0])
      housing_median_age = float(samp['housing_median_age'].values[0])
      total_rooms = float(samp['total_rooms'].values[0])
      total_bedrooms = float(samp['total_bedrooms'].values[0])
      population = float(samp['population'].values[0])
      households = float(samp['households'].values[0])
      median_income = float(samp['median_income'].values[0])

      sample_data.append([longitude,latitude,housing_median_age,total_rooms,total_bedrooms,population,households,median_income]) 
    return sample_data


def predict_price(longitude,latitude,housing_median_age,total_rooms,total_bedrooms,population,households,median_income):
    # initialize data of lists.
    data = {'longitude':float(longitude),
            'latitude':float(latitude),
            'housing_median_age':float(housing_median_age),
            'total_rooms':float(total_rooms),
            'total_bedrooms':float(total_bedrooms),
            'population':float(population),
            'households':float(households),
            'median_income':float(median_income),
    }
    test_features = pd.DataFrame(columns=['longitude', 'latitude', 'housing_median_age', 'total_rooms',
                      'total_bedrooms', 'population', 'households', 'median_income'])
    # Create DataFrame
    test_features = test_features.append(data,ignore_index=True)
    test_features = test_features.dropna(subset=["total_bedrooms"])

    ## 3. scale the numeric features in test set. 
    ## important note: do not apply fit function on the test set, using same scalar from training set
    test_features_normalized = scaler.transform(test_features)
    test_features_normalized

    pred = lin_reg.predict(test_features_normalized)[0]
    
    map_file = draw_map_customize(longitude,latitude, fig_id='test',fig_extension='png' )

    return pred,map_file


### configure inputs/outputs


set_longitude = gr.inputs.Slider(-124.350000, -114.310000, step=0.5, default=-120, label = 'Longitude')
set_latitude = gr.inputs.Slider(32, 41, step=0.5, default=33, label = 'Latitude')
set_housing_median_age = gr.inputs.Slider(1, 52, step=1, default=10, label = 'Housing_median_age (Year)')
set_total_rooms = gr.inputs.Slider(1, 40000, step=5, default=10000, label = 'Total_rooms')
set_total_bedrooms = gr.inputs.Slider(1, 6445, step=5, default=5000, label = 'Total_bedrooms')
set_population = gr.inputs.Slider(3, 35682, step=5, default=10, label = 'Population')
set_households = gr.inputs.Slider(1, 6082, step=5, default=10, label = 'Households')
set_median_income = gr.inputs.Slider(0, 15, step=0.5, default=10, label = 'Median_income')



set_label = gr.outputs.Textbox(label="Predicted Housing Prices")

# define output as the single class text
set_out_images = gr.outputs.Image(label="Closest Neighbors")


### configure gradio, detailed can be found at https://www.gradio.app/docs/#i_slider
interface = gr.Interface(fn=predict_price, 
                         inputs=[set_longitude, set_latitude,set_housing_median_age,set_total_rooms,set_total_bedrooms,set_population,set_households,set_median_income], 
                         outputs=[set_label,set_out_images],
                         examples_per_page = 2,
                         examples = get_sample_data(10), 
                         title="CSCI4750/5750 Demo 3: Web Application for Housing Price Prediction", 
                         description= "Click examples below for a quick demo",
                         theme = 'huggingface',
                         layout = 'vertical'
                         )
interface.launch(debug=True)