rshakked commited on
Commit
0618de2
Β·
1 Parent(s): f60e547

Add model training script

Browse files
Files changed (1) hide show
  1. train_abuse_model.py +212 -0
train_abuse_model.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # Install core packages
2
+ # !pip install -U transformers datasets accelerate
3
+
4
+ # Python standard + ML packages
5
+ import pandas as pd
6
+ import numpy as np
7
+ import torch
8
+
9
+ from sklearn.model_selection import train_test_split
10
+ from sklearn.metrics import classification_report, precision_recall_fscore_support
11
+
12
+ from torch.utils.data import Dataset
13
+
14
+ # Hugging Face transformers
15
+ from transformers import (
16
+ AutoTokenizer,
17
+ BertTokenizer,
18
+ BertForSequenceClassification,
19
+ AutoModelForSequenceClassification,
20
+ Trainer,
21
+ TrainingArguments
22
+ )
23
+
24
+ # Custom Dataset class
25
+ class AbuseDataset(Dataset):
26
+ def __init__(self, texts, labels):
27
+ self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=512)
28
+ self.labels = labels
29
+
30
+ def __len__(self):
31
+ return len(self.labels)
32
+
33
+ def __getitem__(self, idx):
34
+ item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
35
+ item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
36
+ return item
37
+
38
+
39
+ # Convert label values to soft scores: "yes" = 1.0, "plausibly" = 0.5, others = 0.0
40
+ def label_row_soft(row):
41
+ labels = []
42
+ for col in label_columns:
43
+ val = str(row[col]).strip().lower()
44
+ if val == "yes":
45
+ labels.append(1.0)
46
+ elif val == "plausibly":
47
+ labels.append(0.5)
48
+ else:
49
+ labels.append(0.0)
50
+ return labels
51
+
52
+ # Function to map probabilities to 3 classes
53
+ # (0.0, 0.5, 1.0) based on thresholds
54
+ def map_to_3_classes(prob_array, low, high):
55
+ """Map probabilities to 0.0, 0.5, 1.0 using thresholds."""
56
+ mapped = np.zeros_like(prob_array)
57
+ mapped[(prob_array > low) & (prob_array <= high)] = 0.5
58
+ mapped[prob_array > high] = 1.0
59
+ return mapped
60
+
61
+ def convert_to_label_strings(array):
62
+ """Convert float label array to list of strings."""
63
+ return [label_map[val] for val in array.flatten()]
64
+
65
+ def tune_thresholds(probs, true_labels, verbose=True):
66
+ """Search for best (low, high) thresholds by macro F1 score."""
67
+ best_macro_f1 = 0.0
68
+ best_low, best_high = 0.0, 0.0
69
+
70
+ for low in np.arange(0.2, 0.5, 0.05):
71
+ for high in np.arange(0.55, 0.8, 0.05):
72
+ if high <= low:
73
+ continue
74
+
75
+ pred_soft = map_to_3_classes(probs, low, high)
76
+ pred_str = convert_to_label_strings(pred_soft)
77
+ true_str = convert_to_label_strings(true_labels)
78
+
79
+ _, _, f1, _ = precision_recall_fscore_support(
80
+ true_str, pred_str,
81
+ labels=["no", "plausibly", "yes"],
82
+ average="macro",
83
+ zero_division=0
84
+ )
85
+ if verbose:
86
+ print(f"low={low:.2f}, high={high:.2f} -> macro F1={f1:.3f}")
87
+ if f1 > best_macro_f1:
88
+ best_macro_f1 = f1
89
+ best_low, best_high = low, high
90
+
91
+ return best_low, best_high, best_macro_f1
92
+
93
+ def evaluate_model_with_thresholds(trainer, test_dataset):
94
+ """Run full evaluation with automatic threshold tuning."""
95
+ print("\nπŸ” Running model predictions...")
96
+ predictions = trainer.predict(test_dataset)
97
+ probs = torch.sigmoid(torch.tensor(predictions.predictions)).numpy()
98
+ true_soft = np.array(predictions.label_ids)
99
+
100
+ print("\nπŸ”Ž Tuning thresholds...")
101
+ best_low, best_high, best_f1 = tune_thresholds(probs, true_soft)
102
+
103
+ print(f"\nβœ… Best thresholds: low={best_low:.2f}, high={best_high:.2f} (macro F1={best_f1:.3f})")
104
+
105
+ final_pred_soft = map_to_3_classes(probs, best_low, best_high)
106
+ final_pred_str = convert_to_label_strings(final_pred_soft)
107
+ true_str = convert_to_label_strings(true_soft)
108
+
109
+ print("\nπŸ“Š Final Evaluation Report (multi-class per label):\n")
110
+ print(classification_report(
111
+ true_str,
112
+ final_pred_str,
113
+ labels=["no", "plausibly", "yes"],
114
+ zero_division=0
115
+ ))
116
+
117
+ return {
118
+ "thresholds": (best_low, best_high),
119
+ "macro_f1": best_f1,
120
+ "true_labels": true_str,
121
+ "pred_labels": final_pred_str
122
+ }
123
+
124
+ # Load dataset
125
+ df = pd.read_excel("Abusive Relationship Stories - Technion & MSF.xlsx")
126
+
127
+ # Define text and label columns
128
+ text_column = "post_body"
129
+ label_columns = [
130
+ 'emotional_violence', 'physical_violence', 'sexual_violence', 'spiritual_violence',
131
+ 'economic_violence', 'past_offenses', 'social_isolation', 'refuses_treatment',
132
+ 'suicidal_threats', 'mental_condition', 'daily_activity_control', 'violent_behavior',
133
+ 'unemployment', 'substance_use', 'obsessiveness', 'jealousy', 'outbursts',
134
+ 'ptsd', 'hard_childhood', 'emotional_dependency', 'prevention_of_care',
135
+ 'fear_based_relationship', 'humiliation', 'physical_threats',
136
+ 'presence_of_others_in_assault', 'signs_of_injury', 'property_damage',
137
+ 'access_to_weapons', 'gaslighting'
138
+ ]
139
+
140
+ print(np.shape(df))
141
+ # Clean data
142
+ df = df[[text_column] + label_columns]
143
+ print(np.shape(df))
144
+ df = df.dropna(subset=[text_column])
145
+ print(np.shape(df))
146
+
147
+ df["label_vector"] = df.apply(label_row_soft, axis=1)
148
+ label_matrix = df["label_vector"].tolist()
149
+
150
+
151
+ #model_name = "onlplab/alephbert-base"
152
+ model_name = "microsoft/deberta-v3-base"
153
+
154
+ # Load pretrained Hebrew model (AlephBERT) for fine-tuning
155
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
156
+ model = AutoModelForSequenceClassification.from_pretrained(
157
+ model_name,
158
+ num_labels=len(label_columns),
159
+ problem_type="multi_label_classification"
160
+ )
161
+
162
+ # # Optional: Freeze base model layers (only train classifier head)
163
+ # freeze_base = False
164
+ # if freeze_base:
165
+ # for name, param in model.bert.named_parameters():
166
+ # param.requires_grad = False
167
+
168
+ # Freeze bottom 6 layers of DeBERTa encoder
169
+ for name, param in model.named_parameters():
170
+ if any(f"encoder.layer.{i}." in name for i in range(0, 6)):
171
+ param.requires_grad = False
172
+
173
+
174
+ # Proper 3-way split: train / val / test
175
+ train_val_texts, test_texts, train_val_labels, test_labels = train_test_split(
176
+ df[text_column].tolist(), label_matrix, test_size=0.2, random_state=42
177
+ )
178
+
179
+ train_texts, val_texts, train_labels, val_labels = train_test_split(
180
+ train_val_texts, train_val_labels, test_size=0.1, random_state=42
181
+ )
182
+
183
+ train_dataset = AbuseDataset(train_texts, train_labels)
184
+ val_dataset = AbuseDataset(val_texts, val_labels)
185
+ test_dataset = AbuseDataset(test_texts, test_labels)
186
+
187
+
188
+ # TrainingArguments for HuggingFace Trainer (logging, saving)
189
+ training_args = TrainingArguments(
190
+ output_dir="./results",
191
+ num_train_epochs=3,
192
+ per_device_train_batch_size=8,
193
+ per_device_eval_batch_size=8,
194
+ evaluation_strategy="epoch",
195
+ save_strategy="epoch",
196
+ logging_dir="./logs",
197
+ logging_steps=10,
198
+ )
199
+
200
+ # Train using HuggingFace Trainer
201
+ trainer = Trainer(
202
+ model=model,
203
+ args=training_args,
204
+ train_dataset=train_dataset,
205
+ eval_dataset=val_dataset
206
+ )
207
+
208
+ # Start training!
209
+ trainer.train()
210
+
211
+ label_map = {0.0: "no", 0.5: "plausibly", 1.0: "yes"}
212
+ evaluate_model_with_thresholds(trainer, test_dataset)