refactor: create predict_pipeline.py and utils.py to modularize app logic
Browse files- Created predict_pipeline.py to handle enrichment and inference pipeline
- Added run_prediction_pipeline() with mocked summarization and translation
- Handles uploaded WhatsApp ZIP, merges with description, and runs prediction
- Created utils.py for shared logic used across modules
- Moved AbuseDataset class and label_row_soft function
- Added map_to_3_classes, convert_to_label_strings, and tune_thresholds
- Centralized label_map for consistent mapping
- Updated Gradio UI to import from predict_pipeline
- Improves modularity, reusability, and future maintainability
- app.py +29 -10
- predict_pipline.py +0 -0
- train_abuse_model.py +11 -78
- utils.py +85 -0
app.py
CHANGED
@@ -1,20 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
-
from train_abuse_model import
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
with gr.Blocks() as demo:
|
5 |
-
gr.Markdown("## 🧠 Abuse Detection
|
6 |
gr.Markdown("⚠️ Keep this tab open while training or evaluating.")
|
7 |
|
8 |
-
with gr.
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
18 |
|
19 |
if __name__ == "__main__":
|
20 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from train_abuse_model import (
|
3 |
+
run_training,
|
4 |
+
evaluate_saved_model,
|
5 |
+
push_model_to_hub
|
6 |
+
)
|
7 |
+
from predict_pipeline import run_prediction_pipeline
|
8 |
+
|
9 |
|
10 |
with gr.Blocks() as demo:
|
11 |
+
gr.Markdown("## 🧠 Abuse Detection App")
|
12 |
gr.Markdown("⚠️ Keep this tab open while training or evaluating.")
|
13 |
|
14 |
+
with gr.Tab("🧪 Train / Evaluate"):
|
15 |
+
with gr.Row():
|
16 |
+
start_btn = gr.Button("🚀 Start Training")
|
17 |
+
eval_btn = gr.Button("🔍 Evaluate Trained Model")
|
18 |
+
push_btn = gr.Button("📤 Push Model to Hub")
|
19 |
+
output_box = gr.Textbox(label="Logs", lines=25, interactive=False)
|
20 |
+
start_btn.click(fn=run_training, outputs=output_box)
|
21 |
+
eval_btn.click(fn=evaluate_saved_model, outputs=output_box)
|
22 |
+
push_btn.click(fn=push_model_to_hub, outputs=output_box)
|
23 |
+
|
24 |
+
with gr.Tab("🔮 Abuse Detection"):
|
25 |
+
desc_input = gr.Textbox(label="📝 Relationship Description", lines=5, placeholder="Write a relationship story here...")
|
26 |
+
chat_upload = gr.File(label="📁 Optional: WhatsApp Chat ZIP (.zip)", file_types=[".zip"])
|
27 |
+
predict_btn = gr.Button("Run Prediction")
|
28 |
|
29 |
+
enriched_output = gr.Textbox(label="📎 Enriched Input (Used for Prediction)", lines=8, interactive=False)
|
30 |
+
label_output = gr.Textbox(label="🏷️ Predicted Labels", lines=2, interactive=False)
|
31 |
|
32 |
+
predict_btn.click(
|
33 |
+
fn=run_prediction_pipeline,
|
34 |
+
inputs=[desc_input, chat_upload],
|
35 |
+
outputs=[enriched_output, label_output]
|
36 |
+
)
|
37 |
|
38 |
if __name__ == "__main__":
|
39 |
demo.launch()
|
predict_pipline.py
ADDED
File without changes
|
train_abuse_model.py
CHANGED
@@ -3,6 +3,7 @@
|
|
3 |
|
4 |
import logging
|
5 |
import io
|
|
|
6 |
import time
|
7 |
import gradio as gr # ✅ required for progress bar
|
8 |
from pathlib import Path
|
@@ -31,6 +32,16 @@ from transformers import (
|
|
31 |
TrainingArguments
|
32 |
)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
PERSIST_DIR = Path("/home/user/app")
|
35 |
MODEL_DIR = PERSIST_DIR / "saved_model"
|
36 |
LOG_FILE = PERSIST_DIR / "training.log"
|
@@ -56,82 +67,6 @@ logger.info("Transformers version: %s", torch.__version__)
|
|
56 |
logger.info("torch.cuda.is_available(): %s", torch.cuda.is_available())
|
57 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
58 |
|
59 |
-
# Label mapping for evaluation
|
60 |
-
label_map = {0.0: "no", 0.5: "plausibly", 1.0: "yes"}
|
61 |
-
|
62 |
-
# Custom Dataset class
|
63 |
-
|
64 |
-
class AbuseDataset(Dataset):
|
65 |
-
def __init__(self, texts, labels, tokenizer):
|
66 |
-
self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=512)
|
67 |
-
self.labels = labels
|
68 |
-
|
69 |
-
def __len__(self):
|
70 |
-
return len(self.labels)
|
71 |
-
|
72 |
-
def __getitem__(self, idx):
|
73 |
-
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
74 |
-
item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
|
75 |
-
return item
|
76 |
-
def __getitem__(self, idx):
|
77 |
-
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
78 |
-
item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
|
79 |
-
return item
|
80 |
-
|
81 |
-
|
82 |
-
# Convert label values to soft scores: "yes" = 1.0, "plausibly" = 0.5, others = 0.0
|
83 |
-
def label_row_soft(row):
|
84 |
-
labels = []
|
85 |
-
for col in label_columns:
|
86 |
-
val = str(row[col]).strip().lower()
|
87 |
-
if val == "yes":
|
88 |
-
labels.append(1.0)
|
89 |
-
elif val == "plausibly":
|
90 |
-
labels.append(0.5)
|
91 |
-
else:
|
92 |
-
labels.append(0.0)
|
93 |
-
return labels
|
94 |
-
|
95 |
-
# Function to map probabilities to 3 classes
|
96 |
-
# (0.0, 0.5, 1.0) based on thresholds
|
97 |
-
def map_to_3_classes(prob_array, low, high):
|
98 |
-
"""Map probabilities to 0.0, 0.5, 1.0 using thresholds."""
|
99 |
-
mapped = np.zeros_like(prob_array)
|
100 |
-
mapped[(prob_array > low) & (prob_array <= high)] = 0.5
|
101 |
-
mapped[prob_array > high] = 1.0
|
102 |
-
return mapped
|
103 |
-
|
104 |
-
def convert_to_label_strings(array):
|
105 |
-
"""Convert float label array to list of strings."""
|
106 |
-
return [label_map[val] for val in array.flatten()]
|
107 |
-
|
108 |
-
def tune_thresholds(probs, true_labels, verbose=True):
|
109 |
-
"""Search for best (low, high) thresholds by macro F1 score."""
|
110 |
-
best_macro_f1 = 0.0
|
111 |
-
best_low, best_high = 0.0, 0.0
|
112 |
-
|
113 |
-
for low in np.arange(0.2, 0.5, 0.05):
|
114 |
-
for high in np.arange(0.55, 0.8, 0.05):
|
115 |
-
if high <= low:
|
116 |
-
continue
|
117 |
-
|
118 |
-
pred_soft = map_to_3_classes(probs, low, high)
|
119 |
-
pred_str = convert_to_label_strings(pred_soft)
|
120 |
-
true_str = convert_to_label_strings(true_labels)
|
121 |
-
|
122 |
-
_, _, f1, _ = precision_recall_fscore_support(
|
123 |
-
true_str, pred_str,
|
124 |
-
labels=["no", "plausibly", "yes"],
|
125 |
-
average="macro",
|
126 |
-
zero_division=0
|
127 |
-
)
|
128 |
-
if verbose:
|
129 |
-
logger.info(f"low={low:.2f}, high={high:.2f} -> macro F1={f1:.3f}")
|
130 |
-
if f1 > best_macro_f1:
|
131 |
-
best_macro_f1 = f1
|
132 |
-
best_low, best_high = low, high
|
133 |
-
|
134 |
-
return best_low, best_high, best_macro_f1
|
135 |
|
136 |
def evaluate_model_with_thresholds(trainer, test_dataset):
|
137 |
"""Run full evaluation with automatic threshold tuning."""
|
@@ -198,8 +133,6 @@ def evaluate_saved_model(progress=gr.Progress(track_tqdm=True)):
|
|
198 |
eval_dataset=test_dataset
|
199 |
)
|
200 |
|
201 |
-
label_map = {0.0: "no", 0.5: "plausibly", 1.0: "yes"}
|
202 |
-
|
203 |
# Re-yield from generator
|
204 |
for line in evaluate_model_with_thresholds(trainer, test_dataset):
|
205 |
yield line
|
|
|
3 |
|
4 |
import logging
|
5 |
import io
|
6 |
+
import os
|
7 |
import time
|
8 |
import gradio as gr # ✅ required for progress bar
|
9 |
from pathlib import Path
|
|
|
32 |
TrainingArguments
|
33 |
)
|
34 |
|
35 |
+
from utils import (
|
36 |
+
map_to_3_classes,
|
37 |
+
convert_to_label_strings,
|
38 |
+
tune_thresholds,
|
39 |
+
label_map,
|
40 |
+
label_row_soft,
|
41 |
+
AbuseDataset
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
PERSIST_DIR = Path("/home/user/app")
|
46 |
MODEL_DIR = PERSIST_DIR / "saved_model"
|
47 |
LOG_FILE = PERSIST_DIR / "training.log"
|
|
|
67 |
logger.info("torch.cuda.is_available(): %s", torch.cuda.is_available())
|
68 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
def evaluate_model_with_thresholds(trainer, test_dataset):
|
72 |
"""Run full evaluation with automatic threshold tuning."""
|
|
|
133 |
eval_dataset=test_dataset
|
134 |
)
|
135 |
|
|
|
|
|
136 |
# Re-yield from generator
|
137 |
for line in evaluate_model_with_thresholds(trainer, test_dataset):
|
138 |
yield line
|
utils.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from sklearn.metrics import precision_recall_fscore_support
|
3 |
+
import torch
|
4 |
+
from torch.utils.data import Dataset
|
5 |
+
|
6 |
+
# Custom Dataset class
|
7 |
+
class AbuseDataset(Dataset):
|
8 |
+
def __init__(self, texts, labels, tokenizer):
|
9 |
+
self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=512)
|
10 |
+
self.labels = labels
|
11 |
+
|
12 |
+
def __len__(self):
|
13 |
+
return len(self.labels)
|
14 |
+
|
15 |
+
def __getitem__(self, idx):
|
16 |
+
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
17 |
+
item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
|
18 |
+
return item
|
19 |
+
def __getitem__(self, idx):
|
20 |
+
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
21 |
+
item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
|
22 |
+
return item
|
23 |
+
|
24 |
+
|
25 |
+
# Label map used across modules
|
26 |
+
label_map = {
|
27 |
+
0.0: "no",
|
28 |
+
0.5: "plausibly",
|
29 |
+
1.0: "yes"
|
30 |
+
}
|
31 |
+
|
32 |
+
# Function to map probabilities to 3 classes
|
33 |
+
# (0.0, 0.5, 1.0) based on thresholds
|
34 |
+
def map_to_3_classes(prob_array, low, high):
|
35 |
+
"""Map probabilities to 0.0, 0.5, 1.0 using thresholds."""
|
36 |
+
mapped = np.zeros_like(prob_array)
|
37 |
+
mapped[(prob_array > low) & (prob_array <= high)] = 0.5
|
38 |
+
mapped[prob_array > high] = 1.0
|
39 |
+
return mapped
|
40 |
+
|
41 |
+
def convert_to_label_strings(array):
|
42 |
+
"""Convert float label array to list of strings."""
|
43 |
+
return [label_map[val] for val in array.flatten()]
|
44 |
+
|
45 |
+
def tune_thresholds(probs, true_labels, verbose=True):
|
46 |
+
"""Search for best (low, high) thresholds by macro F1 score."""
|
47 |
+
best_macro_f1 = 0.0
|
48 |
+
best_low, best_high = 0.0, 0.0
|
49 |
+
|
50 |
+
for low in np.arange(0.2, 0.5, 0.05):
|
51 |
+
for high in np.arange(0.55, 0.8, 0.05):
|
52 |
+
if high <= low:
|
53 |
+
continue
|
54 |
+
|
55 |
+
pred_soft = map_to_3_classes(probs, low, high)
|
56 |
+
pred_str = convert_to_label_strings(pred_soft)
|
57 |
+
true_str = convert_to_label_strings(true_labels)
|
58 |
+
|
59 |
+
_, _, f1, _ = precision_recall_fscore_support(
|
60 |
+
true_str, pred_str,
|
61 |
+
labels=["no", "plausibly", "yes"],
|
62 |
+
average="macro",
|
63 |
+
zero_division=0
|
64 |
+
)
|
65 |
+
if verbose:
|
66 |
+
print(f"low={low:.2f}, high={high:.2f} -> macro F1={f1:.3f}")
|
67 |
+
if f1 > best_macro_f1:
|
68 |
+
best_macro_f1 = f1
|
69 |
+
best_low, best_high = low, high
|
70 |
+
|
71 |
+
return best_low, best_high, best_macro_f1
|
72 |
+
|
73 |
+
# Convert label values to soft scores: "yes" = 1.0, "plausibly" = 0.5, others = 0.0
|
74 |
+
def label_row_soft(row):
|
75 |
+
labels = []
|
76 |
+
for col in label_columns:
|
77 |
+
val = str(row[col]).strip().lower()
|
78 |
+
if val == "yes":
|
79 |
+
labels.append(1.0)
|
80 |
+
elif val == "plausibly":
|
81 |
+
labels.append(0.5)
|
82 |
+
else:
|
83 |
+
labels.append(0.0)
|
84 |
+
return labels
|
85 |
+
|