rshakked commited on
Commit
d4ac0ac
·
1 Parent(s): 92846e1

chore(debug): print tensor devices and CUDA availability for troubleshooting

Browse files
Files changed (1) hide show
  1. train_abuse_model.py +12 -1
train_abuse_model.py CHANGED
@@ -8,6 +8,8 @@ import numpy as np
8
  import torch
9
  from torch.utils.data import Dataset
10
 
 
 
11
  print("PyTorch version:", torch.__version__)
12
 
13
  from sklearn.model_selection import train_test_split
@@ -46,7 +48,10 @@ class AbuseDataset(Dataset):
46
  item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
47
  item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
48
  return item
49
-
 
 
 
50
 
51
 
52
  # Convert label values to soft scores: "yes" = 1.0, "plausibly" = 0.5, others = 0.0
@@ -226,6 +231,12 @@ trainer = Trainer(
226
  eval_dataset=val_dataset
227
  )
228
 
 
 
 
 
 
 
229
  # Start training!
230
  trainer.train()
231
 
 
8
  import torch
9
  from torch.utils.data import Dataset
10
 
11
+ print("torch.cuda.is_available():", torch.cuda.is_available())
12
+ print("Using device:", device)
13
  print("PyTorch version:", torch.__version__)
14
 
15
  from sklearn.model_selection import train_test_split
 
48
  item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
49
  item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
50
  return item
51
+ def __getitem__(self, idx):
52
+ item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
53
+ item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
54
+ return item
55
 
56
 
57
  # Convert label values to soft scores: "yes" = 1.0, "plausibly" = 0.5, others = 0.0
 
231
  eval_dataset=val_dataset
232
  )
233
 
234
+ # This checks if any tensor is on GPU too early.
235
+ print("🧪 Sample device check from train_dataset:")
236
+ sample = train_dataset[0]
237
+ for k, v in sample.items():
238
+ print(f"{k}: {v.device}")
239
+
240
  # Start training!
241
  trainer.train()
242