RAG / app.py
rtabrizi's picture
Update app.py
c7191ea
raw
history blame
7 kB
import streamlit as st
import torch
import numpy as np
import faiss
import PyPDF2
import os
import langchain
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer, DPRQuestionEncoder, DPRQuestionEncoderTokenizer, BartForQuestionAnswering
from transformers import BartForConditionalGeneration, BartTokenizer, AutoTokenizer
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader
from streamlit import runtime
runtime.exists()
device = torch.device("cpu")
if torch.cuda.is_available():
print("Training on GPU")
device = torch.device("cuda:0")
file_url = "https://arxiv.org/pdf/1706.03762.pdf"
file_path = "assets/attention.pdf"
if not os.path.exists('assets'):
os.mkdir('assets')
if not os.path.isfile(file_path):
os.system(f'curl -o {file_path} {file_url}')
else:
print("File already exists!")
class Retriever:
def __init__(self, file_path, device, context_model_name, question_model_name):
self.file_path = file_path
self.device = device
self.context_tokenizer = DPRContextEncoderTokenizer.from_pretrained(context_model_name)
self.context_model = DPRContextEncoder.from_pretrained(context_model_name).to(device)
self.question_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(question_model_name)
self.question_model = DPRQuestionEncoder.from_pretrained(question_model_name).to(device)
def token_len(self, text):
tokens = self.context_tokenizer.encode(text)
return len(tokens)
def extract_text_from_pdf(self, file_path):
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
text = ''
for page in reader.pages:
text += page.extract_text()
return text
def get_text(self):
with open(self.file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
text = ''
for page in reader.pages:
text += page.extract_text()
return text
def load_chunks(self):
self.text = self.extract_text_from_pdf(self.file_path)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=150,
chunk_overlap=20,
length_function=self.token_len,
separators=["Section", "\n\n", "\n", ".", " ", ""]
)
self.chunks = text_splitter.split_text(self.text)
def load_context_embeddings(self):
encoded_input = self.context_tokenizer(self.chunks, return_tensors='pt', padding=True, truncation=True, max_length=300).to(device)
with torch.no_grad():
model_output = self.context_model(**encoded_input)
self.token_embeddings = model_output.pooler_output.cpu().detach().numpy()
self.index = faiss.IndexFlatL2(self.token_embeddings.shape[1])
self.index.add(self.token_embeddings)
def retrieve_top_k(self, query_prompt, k=10):
encoded_query = self.question_tokenizer(query_prompt, return_tensors="pt", truncation=True, padding=True).to(device)
with torch.no_grad():
model_output = self.question_model(**encoded_query)
query_vector = model_output.pooler_output
query_vector_np = query_vector.cpu().numpy()
D, I = self.index.search(query_vector_np, k)
retrieved_texts = [' '.join(self.chunks[i].split('\n')) for i in I[0]] # Replacing newlines with spaces
return retrieved_texts
class RAG:
def __init__(self,
file_path,
device,
context_model_name="facebook/dpr-ctx_encoder-multiset-base",
question_model_name="facebook/dpr-question_encoder-multiset-base",
generator_name="valhalla/bart-large-finetuned-squadv1"):
# generator_name = "valhalla/bart-large-finetuned-squadv1"
# generator_name = "'vblagoje/bart_lfqa'"
# generator_name = "a-ware/bart-squadv2"
generator_name = "valhalla/bart-large-finetuned-squadv1"
self.generator_tokenizer = AutoTokenizer.from_pretrained(generator_name)
self.generator_model = BartForQuestionAnswering.from_pretrained(generator_name).to(device)
self.retriever = Retriever(file_path, device, context_model_name, question_model_name)
self.retriever.load_chunks()
self.retriever.load_context_embeddings()
def abstractive_query(self, question):
self.generator_tokenizer = BartTokenizer.from_pretrained(self.generator_name)
self.generator_model = BartForConditionalGeneration.from_pretrained(self.generator_name).to(device)
context = self.retriever.retrieve_top_k(question, k=5)
input_text = "answer: " + " ".join(context) + " " + question
inputs = self.generator_tokenizer.encode(input_text, return_tensors='pt', max_length=1024, truncation=True).to(device)
outputs = self.generator_model.generate(inputs, max_length=150, min_length=2, length_penalty=2.0, num_beams=4, early_stopping=True)
answer = self.generator_tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
def extractive_query(self, question):
context = self.retriever.retrieve_top_k(question, k=15)
inputs = self.generator_tokenizer(question, ". ".join(context), return_tensors="pt", truncation=True, max_length=300 , padding="max_length")
with torch.no_grad():
model_inputs = inputs.to(device)
outputs = self.generator_model(**model_inputs)
answer_start_index = outputs.start_logits.argmax()
answer_end_index = outputs.end_logits.argmax()
if answer_end_index < answer_start_index:
answer_start_index, answer_end_index = answer_end_index, answer_start_index
predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
answer = self.generator_tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
answer = answer.replace('\n', ' ').strip()
answer = answer.replace('$', '')
return answer
context_model_name="facebook/dpr-ctx_encoder-single-nq-base"
question_model_name = "facebook/dpr-question_encoder-single-nq-base"
rag = RAG(file_path, device)
st.title("RAG Model Query Interface")
# Initialize session state to keep track of the list of answers and questions
if 'questions' not in st.session_state:
st.session_state.questions = []
if 'answers' not in st.session_state:
st.session_state.answers = []
question = st.text_input("Ask a question", "")
if st.button("Ask"):
# Fetch the answer for the question
answer = rag.extractive_query(question)
# Store the question and its answer in session state
st.session_state.questions.append(question)
st.session_state.answers.append(answer)
# Display the questions and their answers
for q, a in zip(st.session_state.questions, st.session_state.answers):
st.write(f"Q: {q}\nA: {a}")
# Button to ask another question which simply refreshes the page to get a new question input
if st.button("Ask another question"):
st.session_state.questions = []
st.session_state.answers = []
st.experimental_rerun()