GreenThumb / app.py
rtik007's picture
Update app.py
032491b verified
raw
history blame
2.02 kB
import torch
import torch.nn as nn
from torchvision import transforms, models
from PIL import Image
import gradio as gr
# Load the pre-trained DenseNet-121 model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models.densenet121(pretrained=True)
# Modify the classifier layer to output probabilities for 14 classes (pathologies)
num_classes = 14
model.classifier = nn.Sequential(
nn.Linear(model.classifier.in_features, num_classes),
nn.Sigmoid(), # Use Sigmoid for multi-label classification
)
try:
model.load_state_dict(torch.load('chexnet.pth', map_location=device))
except Exception as e:
print(f"Error loading pre-trained weights: {e}")
model.to(device)
model.eval()
# Define image transformations (resize, normalize)
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Class names for the 14 diseases (labels from ChestX-ray14 dataset)
class_names = [
'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass',
'Nodule', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema',
'Emphysema', 'Fibrosis', 'Pleural Thickening', 'Hernia'
]
# Prediction function
def predict_disease(image):
image = transform(image).unsqueeze(0).to(device) # Transform and add batch dimension
with torch.no_grad():
outputs = model(image)
outputs = outputs.cpu().numpy().flatten()
result = {class_name: float(prob) for class_name, prob in zip(class_names, outputs)}
return result
# Gradio Interface
interface = gr.Interface(
fn=predict_disease,
inputs=gr.components.Image(type='pil'), # Updated input component
outputs="label", # Output is a dictionary of labels with probabilities
title="CheXNet Pneumonia Detection",
description="Upload a chest X-ray to detect the probability of 14 different diseases.",
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()