GreenThumb / app.py
rtik007's picture
Update app.py
2e52fb7 verified
import torch
import torch.nn as nn
from torchvision import transforms, models
from PIL import Image
import gradio as gr
# Load the pre-trained DenseNet-121 model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models.densenet121(pretrained=True)
# Modify the classifier layer to output probabilities for 14 classes (pathologies)
num_classes = 14
model.classifier = nn.Sequential(
nn.Linear(model.classifier.in_features, num_classes),
nn.Sigmoid(), # Use Sigmoid for multi-label classification
)
try:
model.load_state_dict(torch.load('chexnet.pth', map_location=device))
except Exception as e:
print(f"Error loading pre-trained weights: {e}")
model.to(device)
model.eval()
# Define image transformations (resize, normalize)
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Class names and their interpretations for the 14 diseases
class_names = [
'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass',
'Nodule', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema',
'Emphysema', 'Fibrosis', 'Pleural Thickening', 'Hernia'
]
interpretations = {
'Atelectasis': "Partial or complete collapse of the lung.",
'Cardiomegaly': "Enlargement of the heart.",
'Effusion': "Fluid accumulation in the chest cavity.",
'Infiltration': "Substances such as fluid in the lungs.",
'Mass': "An abnormal growth in the lung.",
'Nodule': "Small round or oval-shaped growth in the lung.",
'Pneumonia': "Infection causing inflammation in the air sacs.",
'Pneumothorax': "Air in the pleural space causing lung collapse.",
'Consolidation': "Lung tissue that has filled with liquid.",
'Edema': "Excess fluid in the lungs.",
'Emphysema': "Damage to air sacs causing difficulty breathing.",
'Fibrosis': "Thickening or scarring of lung tissue.",
'Pleural Thickening': "Thickening of the pleura (lining of the lungs).",
'Hernia': "Displacement of an organ through a structure."
}
# Prediction function
def predict_disease(image):
image = transform(image).unsqueeze(0).to(device) # Transform and add batch dimension
with torch.no_grad():
outputs = model(image)
outputs = outputs.cpu().numpy().flatten()
# Result with interpretations
result = {
f"{class_name} ({interpretations[class_name]})": float(prob)
for class_name, prob in zip(class_names, outputs)
}
return result
# References to display
references = """
1. Huang, G., et al. (2017). Densely Connected Convolutional Networks. Proceedings of the IEEE conference on computer vision and pattern recognition.
2. Wang, X., et al. (2017). ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE CVPR.
3. Rajpurkar, P., et al. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225.
4. Abid, A., et al. (2019). Gradio: Hassle-Free Sharing and Testing of Machine Learning Models. arXiv preprint arXiv:1906.02569.
"""
# Gradio Interface without using deprecated parameters
interface = gr.Interface(
fn=predict_disease,
inputs=gr.components.Image(type='pil'), # Updated input component
outputs=[gr.components.Label(label="Disease Probabilities"), gr.components.Textbox(label="References", value=references, lines=10)],
title="CheXNet Pneumonia Detection",
description="""Upload a chest X-ray to detect the probability of 14 different diseases.
References:
1. Huang, G., et al. (2017). Densely Connected Convolutional Networks. Proceedings of the IEEE conference on computer vision and pattern recognition.
2. Wang, X., et al. (2017). ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE CVPR.
3. Rajpurkar, P., et al. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225.
4. Abid, A., et al. (2019). Gradio: Hassle-Free Sharing and Testing of Machine Learning Models. arXiv preprint arXiv:1906.02569.
""",
)
# Gradio Interface
interface = gr.Interface(
fn=predict_disease,
inputs=gr.components.Image(type='pil'), # Updated input component
outputs="label", # Output is a dictionary of labels with probabilities
title="CheXNet Pneumonia Detection",
description="Upload a chest X-ray to detect the probability of 14 different diseases.",
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()