Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from torchvision import transforms, models | |
from PIL import Image | |
import gradio as gr | |
# Load the pre-trained DenseNet-121 model | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = models.densenet121(pretrained=True) | |
# Modify the classifier layer to output probabilities for 14 classes (pathologies) | |
num_classes = 14 | |
model.classifier = nn.Sequential( | |
nn.Linear(model.classifier.in_features, num_classes), | |
nn.Sigmoid(), # Use Sigmoid for multi-label classification | |
) | |
try: | |
model.load_state_dict(torch.load('chexnet.pth', map_location=device)) | |
except Exception as e: | |
print(f"Error loading pre-trained weights: {e}") | |
model.to(device) | |
model.eval() | |
# Define image transformations (resize, normalize) | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
# Class names and their interpretations for the 14 diseases | |
class_names = [ | |
'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass', | |
'Nodule', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema', | |
'Emphysema', 'Fibrosis', 'Pleural Thickening', 'Hernia' | |
] | |
interpretations = { | |
'Atelectasis': "Partial or complete collapse of the lung.", | |
'Cardiomegaly': "Enlargement of the heart.", | |
'Effusion': "Fluid accumulation in the chest cavity.", | |
'Infiltration': "Substances such as fluid in the lungs.", | |
'Mass': "An abnormal growth in the lung.", | |
'Nodule': "Small round or oval-shaped growth in the lung.", | |
'Pneumonia': "Infection causing inflammation in the air sacs.", | |
'Pneumothorax': "Air in the pleural space causing lung collapse.", | |
'Consolidation': "Lung tissue that has filled with liquid.", | |
'Edema': "Excess fluid in the lungs.", | |
'Emphysema': "Damage to air sacs causing difficulty breathing.", | |
'Fibrosis': "Thickening or scarring of lung tissue.", | |
'Pleural Thickening': "Thickening of the pleura (lining of the lungs).", | |
'Hernia': "Displacement of an organ through a structure." | |
} | |
# Prediction function | |
def predict_disease(image): | |
image = transform(image).unsqueeze(0).to(device) # Transform and add batch dimension | |
with torch.no_grad(): | |
outputs = model(image) | |
outputs = outputs.cpu().numpy().flatten() | |
# Result with interpretations | |
result = { | |
f"{class_name} ({interpretations[class_name]})": float(prob) | |
for class_name, prob in zip(class_names, outputs) | |
} | |
return result | |
# References to display | |
references = """ | |
1. Huang, G., et al. (2017). Densely Connected Convolutional Networks. Proceedings of the IEEE conference on computer vision and pattern recognition. | |
2. Wang, X., et al. (2017). ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE CVPR. | |
3. Rajpurkar, P., et al. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225. | |
4. Abid, A., et al. (2019). Gradio: Hassle-Free Sharing and Testing of Machine Learning Models. arXiv preprint arXiv:1906.02569. | |
""" | |
# Gradio Interface without using deprecated parameters | |
interface = gr.Interface( | |
fn=predict_disease, | |
inputs=gr.components.Image(type='pil'), # Updated input component | |
outputs=[gr.components.Label(label="Disease Probabilities"), gr.components.Textbox(label="References", value=references, lines=10)], | |
title="CheXNet Pneumonia Detection", | |
description="""Upload a chest X-ray to detect the probability of 14 different diseases. | |
References: | |
1. Huang, G., et al. (2017). Densely Connected Convolutional Networks. Proceedings of the IEEE conference on computer vision and pattern recognition. | |
2. Wang, X., et al. (2017). ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE CVPR. | |
3. Rajpurkar, P., et al. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225. | |
4. Abid, A., et al. (2019). Gradio: Hassle-Free Sharing and Testing of Machine Learning Models. arXiv preprint arXiv:1906.02569. | |
""", | |
) | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=predict_disease, | |
inputs=gr.components.Image(type='pil'), # Updated input component | |
outputs="label", # Output is a dictionary of labels with probabilities | |
title="CheXNet Pneumonia Detection", | |
description="Upload a chest X-ray to detect the probability of 14 different diseases.", | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
interface.launch() | |