Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,125 +1,57 @@
|
|
1 |
import torch
|
2 |
-
|
|
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
5 |
-
import numpy as np
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
|
8 |
-
# Load the
|
9 |
-
|
10 |
-
|
11 |
-
model = ViTForImageClassification.from_pretrained(model_name)
|
12 |
-
except Exception as e:
|
13 |
-
print(f"Error loading model: {e}")
|
14 |
-
image_processor = ViTImageProcessor.from_pretrained(model_name)
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
outputs = model(input_tensor)
|
37 |
-
logits = outputs.logits
|
38 |
-
|
39 |
-
# Get the predicted class and calculate gradients
|
40 |
-
predicted_class = logits.argmax(-1)
|
41 |
-
class_score = logits[0, predicted_class]
|
42 |
-
class_score.backward()
|
43 |
-
|
44 |
-
# Get gradients and weights from the target layer
|
45 |
-
gradients = model.get_input_embeddings().weight.grad
|
46 |
-
pooled_gradients = torch.mean(gradients, dim=[0, 2, 3])
|
47 |
-
|
48 |
-
# Apply Grad-CAM calculation (modify this part as per the model architecture)
|
49 |
-
cam = torch.mean(pooled_gradients * inputs["pixel_values"], dim=1).squeeze()
|
50 |
-
cam = torch.clamp(cam, min=0).numpy() # Ensure non-negative values
|
51 |
-
|
52 |
-
return cam, predicted_class.item(), None # No error
|
53 |
-
except Exception as e:
|
54 |
-
error_message = f"Error generating Grad-CAM: {e}"
|
55 |
-
print(error_message)
|
56 |
-
return None, None, error_message
|
57 |
|
58 |
-
#
|
59 |
-
def
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
# Forward pass to get logits
|
69 |
-
input_tensor = inputs["pixel_values"]
|
70 |
-
outputs = model(input_tensor)
|
71 |
-
logits = outputs.logits
|
72 |
-
|
73 |
-
predicted_class = logits.argmax(-1).item()
|
74 |
-
cam_map, _, grad_cam_error = generate_grad_cam(image, "pooler_output")
|
75 |
-
|
76 |
-
# Check for Grad-CAM errors
|
77 |
-
if grad_cam_error is not None:
|
78 |
-
return {
|
79 |
-
"predicted class": "Error during Grad-CAM generation",
|
80 |
-
"Grad-CAM map": None,
|
81 |
-
"error log": grad_cam_error
|
82 |
-
}
|
83 |
-
|
84 |
-
# Convert cam_map to a visualizable format (heatmap)
|
85 |
-
if cam_map is not None:
|
86 |
-
plt.imshow(cam_map, cmap='jet', alpha=0.5)
|
87 |
-
plt.axis('off')
|
88 |
-
plt.title(f"Grad-CAM for {labels[predicted_class]}")
|
89 |
-
plt.colorbar()
|
90 |
-
plt.savefig("grad_cam_output.png")
|
91 |
-
plt.close()
|
92 |
-
|
93 |
-
# Load the saved image to return it
|
94 |
-
grad_cam_image = Image.open("grad_cam_output.png")
|
95 |
-
else:
|
96 |
-
grad_cam_image = None
|
97 |
-
|
98 |
-
return {
|
99 |
-
"predicted class": labels[predicted_class],
|
100 |
-
"Grad-CAM map": grad_cam_image,
|
101 |
-
"error log": "No errors"
|
102 |
-
}
|
103 |
-
except Exception as e:
|
104 |
-
error_message = f"Error predicting and explaining: {e}"
|
105 |
-
print(error_message)
|
106 |
-
return {
|
107 |
-
"predicted class": "Error during prediction",
|
108 |
-
"Grad-CAM map": None,
|
109 |
-
"error log": error_message
|
110 |
-
}
|
111 |
|
112 |
-
#
|
113 |
-
|
114 |
-
fn=
|
115 |
-
inputs=gr.Image(type=
|
116 |
-
outputs=
|
117 |
-
|
118 |
-
|
119 |
-
gr.Textbox(label="Error Log")
|
120 |
-
],
|
121 |
-
title="Chest X-ray Classification with Debugging Logs"
|
122 |
)
|
123 |
|
|
|
124 |
if __name__ == "__main__":
|
125 |
-
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import transforms, models
|
4 |
from PIL import Image
|
5 |
import gradio as gr
|
|
|
|
|
6 |
|
7 |
+
# Load the pre-trained DenseNet-121 model
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
model = models.densenet121(pretrained=True)
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Modify the classifier layer to output probabilities for 14 classes (14 pathologies)
|
12 |
+
num_classes = 14
|
13 |
+
model.classifier = nn.Sequential(
|
14 |
+
nn.Linear(model.classifier.in_features, num_classes),
|
15 |
+
nn.Sigmoid() # Use Sigmoid for multi-label classification
|
16 |
+
)
|
17 |
+
model.load_state_dict(torch.load('chexnet.pth', map_location=device)) # Load your pre-trained weights
|
18 |
+
model = model.to(device)
|
19 |
+
model.eval()
|
20 |
|
21 |
+
# Define image transformations (resize, normalize)
|
22 |
+
transform = transforms.Compose([
|
23 |
+
transforms.Resize((224, 224)),
|
24 |
+
transforms.ToTensor(),
|
25 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
26 |
+
])
|
27 |
+
|
28 |
+
# Class names for the 14 diseases (labels from ChestX-ray14 dataset)
|
29 |
+
class_names = [
|
30 |
+
'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass',
|
31 |
+
'Nodule', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema',
|
32 |
+
'Emphysema', 'Fibrosis', 'Pleural Thickening', 'Hernia'
|
33 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
# Prediction function
|
36 |
+
def predict_disease(image):
|
37 |
+
image = transform(image).unsqueeze(0).to(device) # Transform and add batch dimension
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model(image)
|
40 |
+
outputs = outputs.cpu().numpy().flatten()
|
41 |
+
|
42 |
+
# Create a dictionary of disease probabilities
|
43 |
+
result = {class_name: float(prob) for class_name, prob in zip(class_names, outputs)}
|
44 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Gradio Interface
|
47 |
+
interface = gr.Interface(
|
48 |
+
fn=predict_disease,
|
49 |
+
inputs=gr.inputs.Image(type='pil'), # Input is an image
|
50 |
+
outputs="label", # Output is a dictionary of labels with probabilities
|
51 |
+
title="CheXNet Pneumonia Detection",
|
52 |
+
description="Upload a chest X-ray to detect the probability of 14 different diseases."
|
|
|
|
|
|
|
53 |
)
|
54 |
|
55 |
+
# Launch the Gradio app
|
56 |
if __name__ == "__main__":
|
57 |
+
interface.launch()
|