Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -68,6 +68,14 @@ def predict_disease(image):
|
|
68 |
}
|
69 |
return result
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
# Gradio Interface
|
72 |
interface = gr.Interface(
|
73 |
fn=predict_disease,
|
@@ -75,6 +83,7 @@ interface = gr.Interface(
|
|
75 |
outputs="label", # Output is a dictionary of labels with probabilities
|
76 |
title="CheXNet Pneumonia Detection",
|
77 |
description="Upload a chest X-ray to detect the probability of 14 different diseases.",
|
|
|
78 |
)
|
79 |
|
80 |
# Launch the Gradio app
|
|
|
68 |
}
|
69 |
return result
|
70 |
|
71 |
+
# References to display
|
72 |
+
references = """
|
73 |
+
1. Huang, G., et al. (2017). Densely Connected Convolutional Networks. Proceedings of the IEEE conference on computer vision and pattern recognition.
|
74 |
+
2. Wang, X., et al. (2017). ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE CVPR.
|
75 |
+
3. Rajpurkar, P., et al. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225.
|
76 |
+
4. Abid, A., et al. (2019). Gradio: Hassle-Free Sharing and Testing of Machine Learning Models. arXiv preprint arXiv:1906.02569.
|
77 |
+
"""
|
78 |
+
|
79 |
# Gradio Interface
|
80 |
interface = gr.Interface(
|
81 |
fn=predict_disease,
|
|
|
83 |
outputs="label", # Output is a dictionary of labels with probabilities
|
84 |
title="CheXNet Pneumonia Detection",
|
85 |
description="Upload a chest X-ray to detect the probability of 14 different diseases.",
|
86 |
+
additional_outputs=[gr.components.Textbox(label="References", value=references, lines=10)], # Display references
|
87 |
)
|
88 |
|
89 |
# Launch the Gradio app
|