Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,38 +8,41 @@ import gradio as gr
|
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
model = models.densenet121(pretrained=True)
|
10 |
|
11 |
-
# Modify the classifier layer to output probabilities for 14 classes (
|
12 |
num_classes = 14
|
13 |
-
model.
|
14 |
-
nn.Linear(model.
|
15 |
-
nn.Sigmoid() # Use Sigmoid for multi-label classification
|
16 |
)
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
model.eval()
|
20 |
|
21 |
# Define image transformations (resize, normalize)
|
22 |
transform = transforms.Compose([
|
23 |
transforms.Resize((224, 224)),
|
24 |
transforms.ToTensor(),
|
25 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
26 |
])
|
27 |
|
28 |
# Class names for the 14 diseases (labels from ChestX-ray14 dataset)
|
29 |
class_names = [
|
30 |
-
'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass',
|
31 |
-
'Nodule', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema',
|
32 |
'Emphysema', 'Fibrosis', 'Pleural Thickening', 'Hernia'
|
33 |
]
|
34 |
|
35 |
# Prediction function
|
36 |
def predict_disease(image):
|
37 |
image = transform(image).unsqueeze(0).to(device) # Transform and add batch dimension
|
|
|
38 |
with torch.no_grad():
|
39 |
outputs = model(image)
|
40 |
outputs = outputs.cpu().numpy().flatten()
|
41 |
-
|
42 |
-
# Create a dictionary of disease probabilities
|
43 |
result = {class_name: float(prob) for class_name, prob in zip(class_names, outputs)}
|
44 |
return result
|
45 |
|
@@ -49,9 +52,9 @@ interface = gr.Interface(
|
|
49 |
inputs=gr.inputs.Image(type='pil'), # Input is an image
|
50 |
outputs="label", # Output is a dictionary of labels with probabilities
|
51 |
title="CheXNet Pneumonia Detection",
|
52 |
-
description="Upload a chest X-ray to detect the probability of 14 different diseases."
|
53 |
)
|
54 |
|
55 |
# Launch the Gradio app
|
56 |
if __name__ == "__main__":
|
57 |
-
interface.launch()
|
|
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
model = models.densenet121(pretrained=True)
|
10 |
|
11 |
+
# Modify the classifier layer to output probabilities for 14 classes (pathologies)
|
12 |
num_classes = 14
|
13 |
+
model.fc = nn.Sequential(
|
14 |
+
nn.Linear(model.fc.in_features, num_classes),
|
15 |
+
nn.Sigmoid(), # Use Sigmoid for multi-label classification
|
16 |
)
|
17 |
+
|
18 |
+
try:
|
19 |
+
model.load_state_dict(torch.load('chexnet.pth', map_location=device))
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error loading pre-trained weights: {e}")
|
22 |
+
model.to(device)
|
23 |
model.eval()
|
24 |
|
25 |
# Define image transformations (resize, normalize)
|
26 |
transform = transforms.Compose([
|
27 |
transforms.Resize((224, 224)),
|
28 |
transforms.ToTensor(),
|
29 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
30 |
])
|
31 |
|
32 |
# Class names for the 14 diseases (labels from ChestX-ray14 dataset)
|
33 |
class_names = [
|
34 |
+
'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass',
|
35 |
+
'Nodule', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema',
|
36 |
'Emphysema', 'Fibrosis', 'Pleural Thickening', 'Hernia'
|
37 |
]
|
38 |
|
39 |
# Prediction function
|
40 |
def predict_disease(image):
|
41 |
image = transform(image).unsqueeze(0).to(device) # Transform and add batch dimension
|
42 |
+
|
43 |
with torch.no_grad():
|
44 |
outputs = model(image)
|
45 |
outputs = outputs.cpu().numpy().flatten()
|
|
|
|
|
46 |
result = {class_name: float(prob) for class_name, prob in zip(class_names, outputs)}
|
47 |
return result
|
48 |
|
|
|
52 |
inputs=gr.inputs.Image(type='pil'), # Input is an image
|
53 |
outputs="label", # Output is a dictionary of labels with probabilities
|
54 |
title="CheXNet Pneumonia Detection",
|
55 |
+
description="Upload a chest X-ray to detect the probability of 14 different diseases.",
|
56 |
)
|
57 |
|
58 |
# Launch the Gradio app
|
59 |
if __name__ == "__main__":
|
60 |
+
interface.launch()
|