Spaces:
Sleeping
Sleeping
File size: 70,505 Bytes
ddc5368 08d9093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import json
import os
import re
from typing import Dict, List, Optional, Tuple
# Import data loader
from data_loader import data_loader, get_napolab_datasets, get_sample_benchmark_results, get_model_metadata
# Load data from YAML file
NAPOLAB_DATASETS = get_napolab_datasets()
SAMPLE_BENCHMARK_RESULTS = get_sample_benchmark_results()
MODEL_METADATA = get_model_metadata()
def load_portuguese_leaderboard_data() -> pd.DataFrame:
"""Load data from the Portuguese leaderboard CSV file."""
try:
csv_path = "portuguese_leaderboard.csv"
if os.path.exists(csv_path):
df = pd.read_csv(csv_path)
# Select only the relevant columns
relevant_columns = ['model_name', 'model_num_parameters', 'assin2_rte', 'assin2_sts', 'faquad_nli', 'hatebr_offensive']
df = df[relevant_columns].copy()
# Rename columns to match the existing format
df = df.rename(columns={
'assin2_rte': 'ASSIN2 RTE',
'assin2_sts': 'ASSIN2 STS',
'faquad_nli': 'FaQUaD-NLI',
'hatebr_offensive': 'HateBR'
})
# Add source information
df['source'] = 'portuguese_leaderboard'
print(f"Loaded {len(df)} models from Portuguese leaderboard")
return df
else:
print(f"Portuguese leaderboard CSV not found: {csv_path}")
return pd.DataFrame()
except Exception as e:
print(f"Error loading Portuguese leaderboard data: {e}")
return pd.DataFrame()
def load_external_models_data() -> pd.DataFrame:
"""Load data from the external models CSV file."""
try:
csv_path = "external_models.csv"
if os.path.exists(csv_path):
df = pd.read_csv(csv_path)
# Select only the relevant columns
relevant_columns = ['model', 'link', 'assin2_rte', 'assin2_sts', 'faquad_nli', 'hatebr_offensive']
df = df[relevant_columns].copy()
# Rename columns to match the existing format
df = df.rename(columns={
'model': 'model_name',
'assin2_rte': 'ASSIN2 RTE',
'assin2_sts': 'ASSIN2 STS',
'faquad_nli': 'FaQUaD-NLI',
'hatebr_offensive': 'HateBR'
})
# Add source information
df['source'] = 'external_models'
# Add model_num_parameters column with 0 for external models
df['model_num_parameters'] = 0
print(f"Loaded {len(df)} external models")
return df
else:
print(f"External models CSV not found: {csv_path}")
return pd.DataFrame()
except Exception as e:
print(f"Error loading external models data: {e}")
return pd.DataFrame()
# Load Portuguese leaderboard data
PORTUGUESE_LEADERBOARD_DATA = load_portuguese_leaderboard_data()
# Load external models data
EXTERNAL_MODELS_DATA = load_external_models_data()
def create_simplified_benchmark_table(selected_datasets: List[str] = None, show_napolab_thesis: bool = True, show_teenytinyllama: bool = True, show_portuguese_leaderboard: bool = True, show_external_models: bool = True, hide_incomplete_models: bool = False, min_average_performance: float = 0.0, search_query: str = "", max_num_parameters: int = 0) -> pd.DataFrame:
"""Create a simplified benchmark table with one column per dataset."""
# Get all dataset names
dataset_names = sorted(NAPOLAB_DATASETS.keys())
dataset_display_names = [NAPOLAB_DATASETS[name].get('name', name) for name in dataset_names]
# Use selected datasets if provided, otherwise use all datasets
if selected_datasets is None:
selected_datasets = dataset_names
# Collect data for each model
model_data = {}
# Process existing benchmark results
for dataset_name, models in SAMPLE_BENCHMARK_RESULTS.items():
for model_name, metrics in models.items():
if model_name not in model_data:
model_data[model_name] = {
'dataset_scores': {},
'url': None,
'source': 'existing'
}
# Calculate average performance for this dataset
avg_performance = np.mean(list(metrics.values()))
model_data[model_name]['dataset_scores'][dataset_name] = avg_performance
# Process Portuguese leaderboard data
if show_portuguese_leaderboard and not PORTUGUESE_LEADERBOARD_DATA.empty:
for _, row in PORTUGUESE_LEADERBOARD_DATA.iterrows():
model_name = row['model_name']
if model_name not in model_data:
model_data[model_name] = {
'dataset_scores': {},
'url': None,
'source': 'portuguese_leaderboard',
'num_parameters': row.get('model_num_parameters', 0)
}
# Map Portuguese leaderboard columns to dataset names
column_mapping = {
'ASSIN2 RTE': 'assin2_rte',
'ASSIN2 STS': 'assin2_sts',
'FaQUaD-NLI': 'faquad-nli',
'HateBR': 'hatebr'
}
for display_name, dataset_name in column_mapping.items():
if dataset_name in NAPOLAB_DATASETS:
score = row[display_name]
if pd.notna(score) and score > 0:
model_data[model_name]['dataset_scores'][dataset_name] = score
# Process external models data
if show_external_models and not EXTERNAL_MODELS_DATA.empty:
for _, row in EXTERNAL_MODELS_DATA.iterrows():
model_name = row['model_name']
if model_name not in model_data:
model_data[model_name] = {
'dataset_scores': {},
'url': row.get('link', ''),
'source': 'external_models',
'num_parameters': row.get('model_num_parameters', 0)
}
# Map external models columns to dataset names
column_mapping = {
'ASSIN2 RTE': 'assin2_rte',
'ASSIN2 STS': 'assin2_sts',
'FaQUaD-NLI': 'faquad-nli',
'HateBR': 'hatebr'
}
for display_name, dataset_name in column_mapping.items():
if dataset_name in NAPOLAB_DATASETS:
score = row[display_name]
if pd.notna(score) and score > 0:
model_data[model_name]['dataset_scores'][dataset_name] = score
# Get model URLs and source information for existing models
additional_models = data_loader.get_additional_models()
for model_name in model_data.keys():
if model_data[model_name]['source'] == 'existing':
# Get URL
for arch_models in additional_models.values():
if model_name in arch_models:
model_data[model_name]['url'] = arch_models[model_name].get('huggingface_url', '')
break
# Get source information
model_metadata = MODEL_METADATA.get(model_name, {})
source = model_metadata.get('source', 'unknown')
model_data[model_name]['source'] = source
# Add num_parameters for existing models (set to 0 as they don't have this info)
model_data[model_name]['num_parameters'] = 0
# Create table data
table_data = []
for model_name, data in model_data.items():
# Apply source filtering
source = data['source']
# Apply show filters - only show models from sources that are checked
if source == 'napolab_thesis' and not show_napolab_thesis:
continue
if source == 'teenytinyllama_paper' and not show_teenytinyllama:
continue
if source == 'portuguese_leaderboard' and not show_portuguese_leaderboard:
continue
if source == 'external_models' and not show_external_models:
continue
# Hide models with unknown source (should not happen with proper data)
if source == 'unknown':
continue
# Apply parameter filtering (only for Portuguese leaderboard models)
if max_num_parameters > 0 and source == 'portuguese_leaderboard':
num_parameters = data.get('num_parameters', 0)
if num_parameters > max_num_parameters:
continue
# Create clickable link for model name
if data['url']:
model_display = f"[{model_name}]({data['url']})"
elif source == 'portuguese_leaderboard' and '/' in model_name:
# Create Hugging Face link for Portuguese leaderboard models with slashes
huggingface_url = f"https://huggingface.co/{model_name}"
model_display = f"[{model_name}]({huggingface_url})"
else:
model_display = model_name
# Create row with dataset scores
row_data = {'Model': model_display}
# Calculate average only over selected datasets
selected_scores = []
for dataset_name in selected_datasets:
score = data['dataset_scores'].get(dataset_name, 0)
if score > 0: # Only include non-zero scores in average
selected_scores.append(score)
overall_avg = np.mean(selected_scores) if selected_scores else 0
row_data['Average'] = round(overall_avg, 4)
# Add scores for each dataset (only selected ones)
for dataset_name in dataset_names:
score = data['dataset_scores'].get(dataset_name, 0)
display_name = dataset_display_names[dataset_names.index(dataset_name)]
# Only add columns for selected datasets
if dataset_name in selected_datasets:
row_data[display_name] = round(score, 4)
table_data.append(row_data)
df = pd.DataFrame(table_data)
# Filter to show only models that have scores for at least one selected dataset
if selected_datasets and not df.empty:
# Get display names for selected datasets
selected_display_names = [NAPOLAB_DATASETS[name].get('name', name) for name in selected_datasets]
# Filter models based on selection criteria
models_to_keep = []
for _, row in df.iterrows():
has_score = False
has_all_scores = True
# Only check the datasets that are actually selected for display
for dataset_name in selected_datasets:
display_name = NAPOLAB_DATASETS[dataset_name].get('name', dataset_name)
if display_name in df.columns:
score = row[display_name]
if score > 0:
has_score = True
else:
has_all_scores = False
# Keep model if it has at least one score
if has_score:
# If hide_incomplete_models is True, only keep models with all scores in selected datasets
if not hide_incomplete_models or has_all_scores:
models_to_keep.append(row['Model'])
# Filter dataframe to only include selected models
if models_to_keep:
df = df[df['Model'].isin(models_to_keep)]
else:
# If no models to keep, create empty DataFrame with proper structure
# Create columns list first
columns = ['Model']
for dataset_name in dataset_names:
display_name = dataset_display_names[dataset_names.index(dataset_name)]
if dataset_name in selected_datasets:
columns.append(display_name)
columns.append('Average')
# Create empty DataFrame with correct columns
df = pd.DataFrame(columns=columns)
# Filter by minimum average performance
if min_average_performance > 0 and not df.empty:
df = df[df['Average'] >= min_average_performance]
# Filter by search query
if search_query and not df.empty:
# Extract model names from markdown links for searching
df_filtered = df.copy()
df_filtered['model_name_clean'] = df_filtered['Model'].str.replace(r'\[([^\]]+)\]\([^)]+\)', r'\1', regex=True)
try:
# Use regex pattern matching
df_filtered = df_filtered[df_filtered['model_name_clean'].str.contains(search_query, case=False, na=False, regex=True)]
except re.error:
# Fallback to simple string matching if regex is invalid
df_filtered = df_filtered[df_filtered['model_name_clean'].str.contains(search_query, case=False, na=False)]
df = df_filtered.drop('model_name_clean', axis=1)
# Sort by Average (descending)
if not df.empty:
df = df.sort_values('Average', ascending=False)
# Add rank column with medal emojis for top 3 and color-coded emojis for others
if not df.empty:
df = df.reset_index(drop=True)
df.index = df.index + 1 # Start ranking from 1
# Create rank column with medal emojis and color-coded emojis
rank_column = []
total_models = len(df)
for rank in df.index:
if rank == 1:
rank_column.append("🥇 1")
elif rank == 2:
rank_column.append("🥈 2")
elif rank == 3:
rank_column.append("🥉 3")
else:
# Color-code based on position relative to total
position_ratio = rank / total_models
if position_ratio <= 0.33: # Top third
rank_column.append("🟢 " + str(rank))
elif position_ratio <= 0.67: # Middle third
rank_column.append("🟡 " + str(rank))
else: # Bottom third
rank_column.append("🔴 " + str(rank))
df.insert(0, 'Rank', rank_column)
return df
# Global variable to track the current CSV file
current_csv_file = None
def export_csv(df: pd.DataFrame):
"""Export the benchmark table to CSV."""
global current_csv_file
print(f"Export function called with dataframe shape: {df.shape}")
if df.empty:
print("Dataframe is empty, returning None")
return None
# Clean up previous file if it exists
if current_csv_file:
try:
import os
if os.path.exists(current_csv_file):
os.remove(current_csv_file)
print(f"Deleted previous CSV file: {current_csv_file}")
except Exception as e:
print(f"Error deleting previous file {current_csv_file}: {e}")
# Clean the dataframe for CSV export
df_clean = df.copy()
# Remove markdown formatting from model names for cleaner CSV
df_clean['Model'] = df_clean['Model'].str.replace(r'\[([^\]]+)\]\([^)]+\)', r'\1', regex=True)
# Create filename with timestamp
from datetime import datetime
import tempfile
import os
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"napolab_benchmark_results_{timestamp}.csv"
# Create file in current directory (simpler approach)
file_path = filename
print(f"Creating CSV file at: {file_path}")
# Save to CSV file
df_clean.to_csv(file_path, index=False)
print(f"CSV file created successfully. File exists: {os.path.exists(file_path)}")
# Update current file tracking
current_csv_file = file_path
return file_path
def cleanup_current_csv():
"""Clean up the current CSV file after download."""
global current_csv_file
import os
if current_csv_file and os.path.exists(current_csv_file):
try:
os.remove(current_csv_file)
print(f"Deleted CSV file after download: {current_csv_file}")
current_csv_file = None
except Exception as e:
print(f"Error deleting file {current_csv_file}: {e}")
def create_model_performance_radar(selected_datasets: List[str] = None, show_napolab_thesis: bool = True, show_teenytinyllama: bool = True, show_portuguese_leaderboard: bool = True, show_external_models: bool = True, hide_incomplete_models: bool = False, min_average_performance: float = 0.0, search_query: str = "", max_num_parameters: int = 0) -> go.Figure:
"""Create a radar chart showing model performance across all datasets."""
# Use selected datasets if provided, otherwise use all datasets
if selected_datasets is None:
selected_datasets = list(NAPOLAB_DATASETS.keys())
# Get dataset names for the radar axes (only selected ones)
dataset_names = selected_datasets
dataset_display_names = [NAPOLAB_DATASETS[name].get('name', name) for name in dataset_names]
# Collect data for each model
model_data = {}
# Process existing benchmark results
for dataset_name, models in SAMPLE_BENCHMARK_RESULTS.items():
if dataset_name in selected_datasets:
for model_name, metrics in models.items():
if model_name not in model_data:
model_data[model_name] = {
'performances': {},
'architecture': MODEL_METADATA.get(model_name, {}).get('architecture', 'Unknown'),
'source': 'existing'
}
# Calculate average performance for this dataset
avg_performance = np.mean(list(metrics.values()))
model_data[model_name]['performances'][dataset_name] = avg_performance
# Process Portuguese leaderboard data
if show_portuguese_leaderboard and not PORTUGUESE_LEADERBOARD_DATA.empty:
for _, row in PORTUGUESE_LEADERBOARD_DATA.iterrows():
model_name = row['model_name']
if model_name not in model_data:
model_data[model_name] = {
'performances': {},
'architecture': 'Unknown',
'source': 'portuguese_leaderboard',
'num_parameters': row.get('model_num_parameters', 0)
}
# Map Portuguese leaderboard columns to dataset names
column_mapping = {
'ASSIN2 RTE': 'assin2_rte',
'ASSIN2 STS': 'assin2_sts',
'FaQUaD-NLI': 'faquad-nli',
'HateBR': 'hatebr'
}
for display_name, dataset_name in column_mapping.items():
if dataset_name in selected_datasets:
score = row[display_name]
if pd.notna(score) and score > 0:
model_data[model_name]['performances'][dataset_name] = score
# Process external models data
if show_external_models and not EXTERNAL_MODELS_DATA.empty:
for _, row in EXTERNAL_MODELS_DATA.iterrows():
model_name = row['model_name']
if model_name not in model_data:
model_data[model_name] = {
'performances': {},
'architecture': 'Unknown',
'source': 'external_models',
'num_parameters': row.get('model_num_parameters', 0)
}
# Map external models columns to dataset names
column_mapping = {
'ASSIN2 RTE': 'assin2_rte',
'ASSIN2 STS': 'assin2_sts',
'FaQUaD-NLI': 'faquad-nli',
'HateBR': 'hatebr'
}
for display_name, dataset_name in column_mapping.items():
if dataset_name in selected_datasets:
score = row[display_name]
if pd.notna(score) and score > 0:
model_data[model_name]['performances'][dataset_name] = score
# Get model URLs and source information for existing models
additional_models = data_loader.get_additional_models()
for model_name in model_data.keys():
if model_data[model_name]['source'] == 'existing':
# Get URL
for arch_models in additional_models.values():
if model_name in arch_models:
model_data[model_name]['url'] = arch_models[model_name].get('huggingface_url', '')
break
# Get source information
model_metadata = MODEL_METADATA.get(model_name, {})
source = model_metadata.get('source', 'unknown')
model_data[model_name]['source'] = source
# Add num_parameters for existing models (set to 0 as they don't have this info)
model_data[model_name]['num_parameters'] = 0
# Apply source filtering
filtered_model_data = {}
for model_name, data in model_data.items():
source = data.get('source', 'existing')
# Apply show filters - only show models from sources that are checked
if source == 'napolab_thesis' and not show_napolab_thesis:
continue
if source == 'teenytinyllama_paper' and not show_teenytinyllama:
continue
if source == 'portuguese_leaderboard' and not show_portuguese_leaderboard:
continue
if source == 'external_models' and not show_external_models:
continue
# Hide models with unknown source (should not happen with proper data)
if source == 'unknown':
continue
# Apply parameter filtering (only for Portuguese leaderboard models)
if max_num_parameters > 0 and source == 'portuguese_leaderboard':
num_parameters = data.get('num_parameters', 0)
if num_parameters > max_num_parameters:
continue
filtered_model_data[model_name] = data
# Apply incomplete model filtering
if hide_incomplete_models and selected_datasets:
final_filtered_data = {}
for model_name, data in filtered_model_data.items():
has_all_scores = True
for dataset_name in selected_datasets:
if data['performances'].get(dataset_name, 0) == 0:
has_all_scores = False
break
if has_all_scores:
final_filtered_data[model_name] = data
filtered_model_data = final_filtered_data
# Apply minimum average performance filtering
if min_average_performance > 0 and selected_datasets:
final_filtered_data = {}
for model_name, data in filtered_model_data.items():
# Calculate average performance for selected datasets
scores = []
for dataset_name in selected_datasets:
score = data['performances'].get(dataset_name, 0)
if score > 0: # Only include non-zero scores
scores.append(score)
if scores:
avg_performance = np.mean(scores)
if avg_performance >= min_average_performance:
final_filtered_data[model_name] = data
filtered_model_data = final_filtered_data
# Apply search query filtering
if search_query:
final_filtered_data = {}
try:
# Use regex pattern matching
import re
pattern = re.compile(search_query, re.IGNORECASE)
for model_name, data in filtered_model_data.items():
if pattern.search(model_name):
final_filtered_data[model_name] = data
except re.error:
# Fallback to simple string matching if regex is invalid
for model_name, data in filtered_model_data.items():
if search_query.lower() in model_name.lower():
final_filtered_data[model_name] = data
filtered_model_data = final_filtered_data
# Sort models by average performance (descending)
model_performances = []
for model_name, data in filtered_model_data.items():
# Calculate average performance for selected datasets
scores = []
for dataset_name in selected_datasets:
score = data['performances'].get(dataset_name, 0)
if score > 0: # Only include non-zero scores
scores.append(score)
avg_performance = np.mean(scores) if scores else 0
model_performances.append((model_name, data, avg_performance))
# Sort by average performance (descending)
model_performances.sort(key=lambda x: x[2], reverse=True)
# Calculate dynamic range based on actual data
all_performance_values = []
for model_name, data, avg_performance in model_performances:
for dataset_name in dataset_names:
score = data['performances'].get(dataset_name, 0)
if score > 0: # Only include non-zero scores
all_performance_values.append(score)
# Set dynamic range with some padding
if all_performance_values:
min_score = min(all_performance_values)
max_score = max(all_performance_values)
# Add 5% padding below minimum and ensure minimum is not below 0.5
range_min = max(0.5, min_score - (max_score - min_score) * 0.05)
range_max = 1.0
else:
# Fallback to default range if no data
range_min = 0.6
range_max = 1.0
# Create radar chart
fig = go.Figure()
# Generate a more distinguishable color palette
num_models = len(model_performances)
# Create a list of line styles for better differentiation
line_styles = ['solid', 'dash', 'dot', 'dashdot', 'longdash', 'longdashdot']
# Use highly contrasting colors for better differentiation
base_colors = [
'#1f77b4', # Blue
'#ff7f0e', # Orange
'#2ca02c', # Green
'#d62728', # Red
'#9467bd', # Purple
'#8c564b', # Brown
'#e377c2', # Pink
'#7f7f7f', # Gray
'#bcbd22', # Olive
'#17becf', # Cyan
'#ff9896', # Light Red
'#98df8a', # Light Green
'#ffbb78', # Light Orange
'#aec7e8', # Light Blue
'#c5b0d5', # Light Purple
]
# Ensure we have enough colors
while len(base_colors) < num_models:
base_colors.extend(base_colors)
colors = base_colors[:num_models]
for i, (model_name, data, avg_performance) in enumerate(model_performances):
# Get performance values for all datasets (fill with 0 if missing)
performance_values = []
for dataset_name in dataset_names:
performance_values.append(data['performances'].get(dataset_name, 0))
# Close the polygon by adding the first value at the end
if performance_values:
performance_values.append(performance_values[0])
# Assign color and line style based on model index for better differentiation
color = colors[i % len(colors)]
line_style = line_styles[i % len(line_styles)]
# Show first two models by default, hide the rest
visible = True if i < 2 else 'legendonly'
# Create theta values that close the polygon
theta_values = dataset_display_names + [dataset_display_names[0]] if dataset_display_names else []
fig.add_trace(go.Scatterpolar(
r=performance_values,
theta=theta_values,
fill=None,
name=model_name,
line_color=color,
line_dash=line_style,
line_width=3,
opacity=0.8,
visible=visible,
hovertemplate=(
"<b>%{fullData.name}</b><br>" +
"Dataset: %{theta}<br>" +
"Performance: %{r:.3f}<br>" +
"Architecture: " + data['architecture'] + "<br>" +
"<extra></extra>"
)
))
# Update layout
fig.update_layout(
title="Model Performance Radar Chart",
polar=dict(
radialaxis=dict(
visible=True,
range=[range_min, range_max],
gridcolor='rgba(0, 0, 0, 0.2)',
linecolor='rgba(0, 0, 0, 0.5)',
tickcolor='rgba(0, 0, 0, 0.7)',
tickfont=dict(color='rgba(0, 0, 0, 0.8)')
),
angularaxis=dict(
tickmode='array',
tickvals=list(range(len(dataset_display_names))),
ticktext=dataset_display_names,
gridcolor='rgba(0, 0, 0, 0.2)',
linecolor='rgba(0, 0, 0, 0.5)',
tickcolor='rgba(0, 0, 0, 0.7)',
tickfont=dict(color='rgba(0, 0, 0, 0.8)')
),
bgcolor='rgba(255, 255, 255, 0)'
),
height=700,
showlegend=True,
plot_bgcolor='rgba(255, 255, 255, 0)',
paper_bgcolor='rgba(255, 255, 255, 0)',
legend=dict(
yanchor="top",
y=-0.15,
xanchor="center",
x=0.5,
bgcolor='rgba(255, 255, 255, 0.95)',
bordercolor='rgba(0, 0, 0, 0.2)',
borderwidth=1,
orientation="h",
font=dict(color='rgba(0, 0, 0, 0.8)')
),
margin=dict(l=50, r=50, t=100, b=100),
font=dict(color='rgba(0, 0, 0, 0.8)')
)
return fig
# Gradio Interface
with gr.Blocks(title="Napolab Leaderboard", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# 🌎 Napolab Leaderboard
Stay up to date with the latest advancements in Portuguese language models and their performance across carefully curated Portuguese language tasks.
[⭐ Star us on GitHub](https://github.com/ruanchaves/napolab)
""")
with gr.Tabs():
# Benchmark Results Tab
with gr.Tab("🏆 Benchmark Results"):
gr.Markdown("### Model Performance Benchmarks")
with gr.Accordion("Select Datasets to Include: (Click to expand)", open=False):
with gr.Row():
# Create checkboxes for each dataset
dataset_checkboxes = []
for dataset_name in sorted(NAPOLAB_DATASETS.keys()):
display_name = NAPOLAB_DATASETS[dataset_name].get('name', dataset_name)
# Default to selected only for ASSIN 2 STS, FaQUaD-NLI, and HateBR
default_value = display_name in ['ASSIN 2 STS', 'FaQUaD-NLI', 'HateBR']
checkbox = gr.Checkbox(
label=display_name,
value=default_value
)
dataset_checkboxes.append((dataset_name, checkbox))
with gr.Accordion("Filter by Score: (Click to expand)", open=False):
with gr.Row():
hide_incomplete_models = gr.Checkbox(
label="Hide models with zero scores in selected datasets",
value=True
)
min_average_performance = gr.Slider(
minimum=0,
maximum=100,
value=80,
step=1,
label="Minimum Average Performance (%)"
)
with gr.Accordion("Filter by Data Source: (Click to expand)", open=False):
with gr.Row():
show_napolab_thesis = gr.Checkbox(
label="Napolab Thesis models",
value=True
)
show_teenytinyllama = gr.Checkbox(
label="TeenyTinyLlama models",
value=True
)
show_portuguese_leaderboard = gr.Checkbox(
label="Open Portuguese LLM Leaderboard models (open-source)",
value=True
)
show_external_models = gr.Checkbox(
label="Open Portuguese LLM Leaderboard models (proprietary)",
value=True
)
# Calculate max parameters for slider
max_params = 0
if not PORTUGUESE_LEADERBOARD_DATA.empty:
max_params = int(PORTUGUESE_LEADERBOARD_DATA['model_num_parameters'].max())
with gr.Accordion("Filter by Model Size: (Click to expand)", open=False):
with gr.Row():
max_num_parameters = gr.Slider(
minimum=0,
maximum=max_params,
value=0,
step=1,
label="Maximum Number of Parameters",
info="This slider is applicable only to Open PT LLM Leaderboard models. For other models, it will have no effect."
)
# Search bar for filtering models
search_query = gr.Textbox(
label="Search models by name (supports regex)",
placeholder="Enter model name or regex pattern to filter...",
value="",
info="Supports regular expressions. Examples: 'bert.*large', 'gemini|gpt', 'mdeberta.*', '^bert'"
)
benchmark_table = gr.DataFrame(
label="Model Performance Benchmarks",
wrap=[True, False, False, False, False, False, False, False, False, False],
interactive=False,
datatype=["str", "markdown", "number", "number", "number", "number", "number", "number", "number", "number"],
column_widths=["80px", "200px", "100px", "120px", "120px", "120px", "120px", "120px", "120px", "120px"]
)
gr.Markdown("*🥇🥈🥉 = Top 3 | 🟢 = Top 33% | 🟡 = Middle 33% | 🔴 = Bottom 33%*")
# Export to CSV button and file component
export_button = gr.Button("📥 Export to CSV", variant="secondary")
csv_file = gr.File(label="Download CSV", interactive=False, visible=True)
# Model Analysis Tab
with gr.Tab("📈 Model Analysis"):
gr.Markdown("### Model Performance Radar Chart")
# Dataset Selection Controls
with gr.Accordion("Select Datasets to Display: (Click to expand)", open=False):
with gr.Row():
# Create checkboxes for each dataset
analysis_dataset_checkboxes = []
for dataset_name in sorted(NAPOLAB_DATASETS.keys()):
display_name = NAPOLAB_DATASETS[dataset_name].get('name', dataset_name)
# Default to selected only for ASSIN 2 STS, FaQUaD-NLI, and HateBR
default_value = display_name in ['ASSIN 2 STS', 'FaQUaD-NLI', 'HateBR']
checkbox = gr.Checkbox(
label=display_name,
value=default_value
)
analysis_dataset_checkboxes.append((dataset_name, checkbox))
# Filter Controls
with gr.Accordion("Filter by Score: (Click to expand)", open=False):
with gr.Row():
hide_incomplete_models_analysis = gr.Checkbox(
label="Hide models with zero scores in selected datasets",
value=True
)
min_average_performance_analysis = gr.Slider(
minimum=0,
maximum=100,
value=80,
step=1,
label="Minimum Average Performance (%)"
)
with gr.Accordion("Filter by Data Source: (Click to expand)", open=False):
with gr.Row():
show_napolab_thesis_analysis = gr.Checkbox(
label="Napolab Thesis models",
value=True
)
show_teenytinyllama_analysis = gr.Checkbox(
label="TeenyTinyLlama models",
value=True
)
show_portuguese_leaderboard_analysis = gr.Checkbox(
label="Open Portuguese LLM Leaderboard models (open-source)",
value=True
)
show_external_models_analysis = gr.Checkbox(
label="Open Portuguese LLM Leaderboard models (proprietary)",
value=True
)
# Parameter slider for Model Analysis tab
with gr.Accordion("Filter by Model Size: (Click to expand)", open=False):
with gr.Row():
max_num_parameters_analysis = gr.Slider(
minimum=0,
maximum=max_params,
value=0,
step=1,
label="Maximum Number of Parameters",
info="This slider is applicable only to Open PT LLM Leaderboard models. For other models, it will have no effect."
)
# Search bar for filtering models in radar chart
search_query_analysis = gr.Textbox(
label="Search models by name (supports regex)",
placeholder="Enter model name or regex pattern to filter...",
value="",
info="Supports regular expressions. Examples: 'bert.*large', 'gemini|gpt', 'mdeberta.*', '^bert'"
)
model_analysis_chart = gr.Plot(label="Model Performance Radar Chart")
# Add scatter plot below radar chart
model_scatter_plot = gr.Plot(label="Model Performance vs Number of Parameters")
gr.Markdown("""
**How to interact with the chart:**
- **Click on legend items** to show/hide specific models.
- **Double-click on a legend item** to isolate that model (hide all others).
- **Double-click again** to show all models.
Models in the legend are sorted in descending order based on their average performance across your chosen datasets.
""")
# About Tab
with gr.Tab("ℹ️ About"):
gr.Markdown("""
## About Napolab
**Natural Portuguese Language Benchmark (Napolab)** is a comprehensive collection of Portuguese datasets designed for evaluating Large Language Models.
- [GitHub repository](https://github.com/ruanchaves/napolab)
- [Hugging Face Dataset](https://huggingface.co/datasets/ruanchaves/napolab)
- Article: ["The Hidden Truth About LLM Performance: Why Your Benchmark Results Might Be Misleading"](https://ruanchaves.medium.com/the-hidden-truth-about-llm-performance-why-your-benchmark-results-might-be-misleading-afd24f40a46c)
### Data Sources:
The benchmark results and model evaluations presented in this leaderboard are compiled from multiple sources:
**1. "Lessons learned from the evaluation of Portuguese language models"** by Ruan Chaves Rodrigues (2023). Available at: [University of Malta OAR@UM Repository](https://www.um.edu.mt/library/oar/handle/123456789/120557)
**2. Open PT LLM Leaderboard** by Eduardo Garcia (2025). Available at: [Hugging Face Spaces](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard).
**3. "TeenyTinyLlama: Open-source tiny language models trained in Brazilian Portuguese"** by Corrêa et al. (2024). Available at: [arXiv](https://arxiv.org/abs/2401.16640).
### Thesis Citation:
```bibtex
@mastersthesis{chaves2023lessons,
title={Lessons learned from the evaluation of Portuguese language models},
author={Chaves Rodrigues, Ruan},
year={2023},
school={University of Malta},
url={https://www.um.edu.mt/library/oar/handle/123456789/120557}
}
```
### Napolab Citation:
```bibtex
@software{Chaves_Rodrigues_napolab_2023,
author = {Chaves Rodrigues, Ruan and Tanti, Marc and Agerri, Rodrigo},
doi = {10.5281/zenodo.7781848},
month = {3},
title = {{Natural Portuguese Language Benchmark (Napolab)}},
url = {https://github.com/ruanchaves/napolab},
version = {1.0.0},
year = {2023}
}
```
""")
def create_model_performance_scatter(selected_datasets: List[str] = None, show_napolab_thesis: bool = True, show_teenytinyllama: bool = True, show_portuguese_leaderboard: bool = True, show_external_models: bool = True, hide_incomplete_models: bool = False, min_average_performance: float = 0.0, search_query: str = "", max_num_parameters: int = 0) -> go.Figure:
"""Create a scatter plot showing model performance vs number of parameters."""
# Use selected datasets if provided, otherwise use all datasets
if selected_datasets is None:
selected_datasets = list(NAPOLAB_DATASETS.keys())
# Collect data for each model
model_data = {}
# Process existing benchmark results
for dataset_name, models in SAMPLE_BENCHMARK_RESULTS.items():
if dataset_name in selected_datasets:
for model_name, metrics in models.items():
if model_name not in model_data:
# Get actual source from MODEL_METADATA
model_metadata = MODEL_METADATA.get(model_name, {})
actual_source = model_metadata.get('source', 'unknown')
model_data[model_name] = {
'performances': {},
'architecture': model_metadata.get('architecture', 'Unknown'),
'source': actual_source,
'num_parameters': 0
}
# Calculate average performance for this dataset
avg_performance = np.mean(list(metrics.values()))
model_data[model_name]['performances'][dataset_name] = avg_performance
# Process Portuguese leaderboard data
if show_portuguese_leaderboard and not PORTUGUESE_LEADERBOARD_DATA.empty:
for _, row in PORTUGUESE_LEADERBOARD_DATA.iterrows():
model_name = row['model_name']
if model_name not in model_data:
model_data[model_name] = {
'performances': {},
'architecture': 'Unknown',
'source': 'portuguese_leaderboard',
'num_parameters': row.get('model_num_parameters', 0)
}
# Map Portuguese leaderboard columns to dataset names
column_mapping = {
'ASSIN2 RTE': 'assin2_rte',
'ASSIN2 STS': 'assin2_sts',
'FaQUaD-NLI': 'faquad-nli',
'HateBR': 'hatebr'
}
for display_name, dataset_name in column_mapping.items():
if dataset_name in selected_datasets:
score = row[display_name]
if pd.notna(score) and score > 0:
model_data[model_name]['performances'][dataset_name] = score
# Process external models data
if show_external_models and not EXTERNAL_MODELS_DATA.empty:
for _, row in EXTERNAL_MODELS_DATA.iterrows():
model_name = row['model_name']
if model_name not in model_data:
model_data[model_name] = {
'performances': {},
'architecture': 'Unknown',
'source': 'external_models',
'num_parameters': row.get('model_num_parameters', 0)
}
# Map external models columns to dataset names
column_mapping = {
'ASSIN2 RTE': 'assin2_rte',
'ASSIN2 STS': 'assin2_sts',
'FaQUaD-NLI': 'faquad-nli',
'HateBR': 'hatebr'
}
for display_name, dataset_name in column_mapping.items():
if dataset_name in selected_datasets:
score = row[display_name]
if pd.notna(score) and score > 0:
model_data[model_name]['performances'][dataset_name] = score
# Apply source filtering
filtered_model_data = {}
for model_name, data in model_data.items():
source = data.get('source', 'existing')
# Apply show filters - only show models from sources that are checked
if source == 'napolab_thesis' and not show_napolab_thesis:
continue
if source == 'teenytinyllama_paper' and not show_teenytinyllama:
continue
if source == 'portuguese_leaderboard' and not show_portuguese_leaderboard:
continue
if source == 'external_models' and not show_external_models:
continue
# Hide models with unknown source (should not happen with proper data)
if source == 'unknown':
continue
# Apply parameter filtering (only for Portuguese leaderboard models)
if max_num_parameters > 0 and source == 'portuguese_leaderboard':
num_parameters = data.get('num_parameters', 0)
if num_parameters > max_num_parameters:
continue
filtered_model_data[model_name] = data
# Apply incomplete model filtering
if hide_incomplete_models and selected_datasets:
final_filtered_data = {}
for model_name, data in filtered_model_data.items():
has_all_scores = True
for dataset_name in selected_datasets:
if data['performances'].get(dataset_name, 0) == 0:
has_all_scores = False
break
if has_all_scores:
final_filtered_data[model_name] = data
filtered_model_data = final_filtered_data
# Apply minimum average performance filtering
if min_average_performance > 0 and selected_datasets:
final_filtered_data = {}
for model_name, data in filtered_model_data.items():
# Calculate average performance for selected datasets
scores = []
for dataset_name in selected_datasets:
score = data['performances'].get(dataset_name, 0)
if score > 0: # Only include non-zero scores
scores.append(score)
if scores:
avg_performance = np.mean(scores)
if avg_performance >= min_average_performance:
final_filtered_data[model_name] = data
filtered_model_data = final_filtered_data
# Apply search query filtering
if search_query:
final_filtered_data = {}
try:
# Use regex pattern matching
import re
pattern = re.compile(search_query, re.IGNORECASE)
for model_name, data in filtered_model_data.items():
if pattern.search(model_name):
final_filtered_data[model_name] = data
except re.error:
# Fallback to simple string matching if regex is invalid
for model_name, data in filtered_model_data.items():
if search_query.lower() in model_name.lower():
final_filtered_data[model_name] = data
filtered_model_data = final_filtered_data
# Prepare data for scatter plot
scatter_data = []
for model_name, data in filtered_model_data.items():
# Calculate average performance for selected datasets
scores = []
for dataset_name in selected_datasets:
score = data['performances'].get(dataset_name, 0)
if score > 0: # Only include non-zero scores
scores.append(score)
if scores:
avg_performance = np.mean(scores)
num_parameters = data.get('num_parameters', 0)
source = data.get('source', 'unknown')
scatter_data.append({
'model_name': model_name,
'avg_performance': avg_performance,
'num_parameters': num_parameters,
'source': source
})
if not scatter_data:
# Create empty figure if no data
fig = go.Figure()
fig.add_annotation(
text="No data available for the selected filters",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16)
)
fig.update_layout(
title="Model Performance vs Number of Parameters",
xaxis_title="Number of Parameters",
yaxis_title="Average Performance Score",
height=500
)
return fig
# Create scatter plot
df_scatter = pd.DataFrame(scatter_data)
# Create color mapping for sources
color_map = {
'portuguese_leaderboard': '#1f77b4',
'external_models': '#ff7f0e',
'napolab_thesis': '#2ca02c',
'teenytinyllama_paper': '#d62728',
'unknown': '#9467bd'
}
# Create display name mapping for sources
display_name_map = {
'portuguese_leaderboard': 'Open PT LLM Leaderboard',
'external_models': 'Proprietary Models',
'napolab_thesis': 'Napolab Thesis',
'teenytinyllama_paper': 'TeenyTinyLlama Paper',
'unknown': 'Unknown Source'
}
fig = go.Figure()
for source in df_scatter['source'].unique():
source_data = df_scatter[df_scatter['source'] == source]
color = color_map.get(source, '#7f7f7f')
display_name = display_name_map.get(source, source.replace('_', ' ').title())
fig.add_trace(go.Scatter(
x=source_data['num_parameters'],
y=source_data['avg_performance'],
mode='markers',
name=display_name,
marker=dict(
color=color,
size=8,
opacity=0.7
),
text=source_data['model_name'],
hovertemplate=(
"<b>%{text}</b><br>" +
"Average Performance: %{y:.3f}<br>" +
"Number of Parameters: %{x:,}<br>" +
"Source: " + display_name + "<br>" +
"<extra></extra>"
)
))
fig.update_layout(
title="Model Performance vs Number of Parameters",
xaxis_title="Number of Parameters",
yaxis_title="Average Performance Score",
height=500,
showlegend=True,
plot_bgcolor='rgba(255, 255, 255, 0)',
paper_bgcolor='rgba(255, 255, 255, 0)',
legend=dict(
yanchor="top",
y=-0.15,
xanchor="center",
x=0.5,
bgcolor='rgba(255, 255, 255, 0.95)',
bordercolor='rgba(0, 0, 0, 0.2)',
borderwidth=1,
orientation="h"
),
margin=dict(l=50, r=50, t=100, b=100)
)
return fig
# Event handlers
def update_radar_chart(*args):
# Extract arguments for radar chart
dataset_values = args[:len(analysis_dataset_checkboxes)]
hide_incomplete_models = args[len(analysis_dataset_checkboxes)]
min_average_performance = args[len(analysis_dataset_checkboxes) + 1] / 100.0 # Convert percentage to decimal
show_napolab_thesis = args[len(analysis_dataset_checkboxes) + 2]
show_teenytinyllama = args[len(analysis_dataset_checkboxes) + 3]
show_portuguese_leaderboard = args[len(analysis_dataset_checkboxes) + 4]
show_external_models = args[len(analysis_dataset_checkboxes) + 5]
search_query = args[len(analysis_dataset_checkboxes) + 6]
max_num_parameters = args[len(analysis_dataset_checkboxes) + 7]
# Convert dataset selections to list of selected dataset names
selected_datasets = []
for i, (dataset_name, _) in enumerate(analysis_dataset_checkboxes):
if dataset_values[i]:
selected_datasets.append(dataset_name)
return create_model_performance_radar(selected_datasets, show_napolab_thesis, show_teenytinyllama, show_portuguese_leaderboard, show_external_models, hide_incomplete_models, min_average_performance, search_query, max_num_parameters)
def update_benchmark_table(*args):
# Extract arguments
dataset_values = args[:len(dataset_checkboxes)]
hide_incomplete_models = args[len(dataset_checkboxes)]
min_average_performance = args[len(dataset_checkboxes) + 1] / 100.0 # Convert percentage to decimal
show_napolab_thesis = args[len(dataset_checkboxes) + 2]
show_teenytinyllama = args[len(dataset_checkboxes) + 3]
show_portuguese_leaderboard = args[len(dataset_checkboxes) + 4]
show_external_models = args[len(dataset_checkboxes) + 5]
search_query = args[len(dataset_checkboxes) + 6]
max_num_parameters = args[len(dataset_checkboxes) + 7]
# Convert dataset selections to list of selected dataset names
selected_datasets = []
for i, (dataset_name, _) in enumerate(dataset_checkboxes):
if dataset_values[i]:
selected_datasets.append(dataset_name)
df = create_simplified_benchmark_table(selected_datasets, show_napolab_thesis, show_teenytinyllama, show_portuguese_leaderboard, show_external_models, hide_incomplete_models, min_average_performance, search_query, max_num_parameters)
return df
def update_scatter_plot(*args):
# Extract arguments for scatter plot
dataset_values = args[:len(analysis_dataset_checkboxes)]
hide_incomplete_models = args[len(analysis_dataset_checkboxes)]
min_average_performance = args[len(analysis_dataset_checkboxes) + 1] / 100.0 # Convert percentage to decimal
show_napolab_thesis = args[len(analysis_dataset_checkboxes) + 2]
show_teenytinyllama = args[len(analysis_dataset_checkboxes) + 3]
show_portuguese_leaderboard = args[len(analysis_dataset_checkboxes) + 4]
show_external_models = args[len(analysis_dataset_checkboxes) + 5]
search_query = args[len(analysis_dataset_checkboxes) + 6]
max_num_parameters = args[len(analysis_dataset_checkboxes) + 7]
# Convert dataset selections to list of selected dataset names
selected_datasets = []
for i, (dataset_name, _) in enumerate(analysis_dataset_checkboxes):
if dataset_values[i]:
selected_datasets.append(dataset_name)
return create_model_performance_scatter(selected_datasets, show_napolab_thesis, show_teenytinyllama, show_portuguese_leaderboard, show_external_models, hide_incomplete_models, min_average_performance, search_query, max_num_parameters)
# Connect dataset checkboxes to update table
for dataset_name, checkbox in dataset_checkboxes:
checkbox.change(
update_benchmark_table,
inputs=[cb for _, cb in dataset_checkboxes] + [hide_incomplete_models, min_average_performance, show_napolab_thesis, show_teenytinyllama, show_portuguese_leaderboard, show_external_models, search_query, max_num_parameters],
outputs=benchmark_table
)
hide_incomplete_models.change(
update_benchmark_table,
inputs=[cb for _, cb in dataset_checkboxes] + [hide_incomplete_models, min_average_performance, show_napolab_thesis, show_teenytinyllama, show_portuguese_leaderboard, show_external_models, search_query, max_num_parameters],
outputs=benchmark_table
)
min_average_performance.change(
update_benchmark_table,
inputs=[cb for _, cb in dataset_checkboxes] + [hide_incomplete_models, min_average_performance, show_napolab_thesis, show_teenytinyllama, show_portuguese_leaderboard, show_external_models, search_query, max_num_parameters],
outputs=benchmark_table
)
show_napolab_thesis.change(
update_benchmark_table,
inputs=[cb for _, cb in dataset_checkboxes] + [hide_incomplete_models, min_average_performance, show_napolab_thesis, show_teenytinyllama, show_portuguese_leaderboard, show_external_models, search_query, max_num_parameters],
outputs=benchmark_table
)
show_teenytinyllama.change(
update_benchmark_table,
inputs=[cb for _, cb in dataset_checkboxes] + [hide_incomplete_models, min_average_performance, show_napolab_thesis, show_teenytinyllama, show_portuguese_leaderboard, show_external_models, search_query, max_num_parameters],
outputs=benchmark_table
)
show_portuguese_leaderboard.change(
update_benchmark_table,
inputs=[cb for _, cb in dataset_checkboxes] + [hide_incomplete_models, min_average_performance, show_napolab_thesis, show_teenytinyllama, show_portuguese_leaderboard, show_external_models, search_query, max_num_parameters],
outputs=benchmark_table
)
show_external_models.change(
update_benchmark_table,
inputs=[cb for _, cb in dataset_checkboxes] + [hide_incomplete_models, min_average_performance, show_napolab_thesis, show_teenytinyllama, show_portuguese_leaderboard, show_external_models, search_query, max_num_parameters],
outputs=benchmark_table
)
# Connect search query to update table
search_query.change(
update_benchmark_table,
inputs=[cb for _, cb in dataset_checkboxes] + [hide_incomplete_models, min_average_performance, show_napolab_thesis, show_teenytinyllama, show_portuguese_leaderboard, show_external_models, search_query, max_num_parameters],
outputs=benchmark_table
)
# Connect max_num_parameters to update table
max_num_parameters.change(
update_benchmark_table,
inputs=[cb for _, cb in dataset_checkboxes] + [hide_incomplete_models, min_average_performance, show_napolab_thesis, show_teenytinyllama, show_portuguese_leaderboard, show_external_models, search_query, max_num_parameters],
outputs=benchmark_table
)
# Connect export button
export_button.click(
export_csv,
inputs=benchmark_table,
outputs=csv_file
)
# Connect file download to cleanup
csv_file.change(
cleanup_current_csv,
inputs=None,
outputs=None
)
# Connect analysis chart events
# Connect dataset checkboxes to update radar chart
for dataset_name, checkbox in analysis_dataset_checkboxes:
checkbox.change(
update_radar_chart,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_analysis_chart
)
hide_incomplete_models_analysis.change(
update_radar_chart,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_analysis_chart
)
min_average_performance_analysis.change(
update_radar_chart,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_analysis_chart
)
show_napolab_thesis_analysis.change(
update_radar_chart,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_analysis_chart
)
show_teenytinyllama_analysis.change(
update_radar_chart,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_analysis_chart
)
show_portuguese_leaderboard_analysis.change(
update_radar_chart,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_analysis_chart
)
show_external_models_analysis.change(
update_radar_chart,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_analysis_chart
)
# Connect search query to update radar chart
search_query_analysis.change(
update_radar_chart,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_analysis_chart
)
# Connect max_num_parameters_analysis to update radar chart
max_num_parameters_analysis.change(
update_radar_chart,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_analysis_chart
)
# Connect all analysis controls to update scatter plot
for dataset_name, checkbox in analysis_dataset_checkboxes:
checkbox.change(
update_scatter_plot,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_scatter_plot
)
hide_incomplete_models_analysis.change(
update_scatter_plot,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_scatter_plot
)
min_average_performance_analysis.change(
update_scatter_plot,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_scatter_plot
)
show_napolab_thesis_analysis.change(
update_scatter_plot,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_scatter_plot
)
show_teenytinyllama_analysis.change(
update_scatter_plot,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_scatter_plot
)
show_portuguese_leaderboard_analysis.change(
update_scatter_plot,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_scatter_plot
)
show_external_models_analysis.change(
update_scatter_plot,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_scatter_plot
)
search_query_analysis.change(
update_scatter_plot,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_scatter_plot
)
max_num_parameters_analysis.change(
update_scatter_plot,
inputs=[cb for _, cb in analysis_dataset_checkboxes] + [hide_incomplete_models_analysis, min_average_performance_analysis, show_napolab_thesis_analysis, show_teenytinyllama_analysis, show_portuguese_leaderboard_analysis, show_external_models_analysis, search_query_analysis, max_num_parameters_analysis],
outputs=model_scatter_plot
)
# Connect events
# Load model analysis chart on app start
app.load(lambda: update_radar_chart(*([display_name in ['ASSIN 2 STS', 'FaQUaD-NLI', 'HateBR'] for _, display_name in [(name, NAPOLAB_DATASETS[name].get('name', name)) for name in sorted(NAPOLAB_DATASETS.keys())]] + [True, 80, True, True, True, True, "", 0])), outputs=model_analysis_chart)
# Load scatter plot on app start
app.load(lambda: update_scatter_plot(*([display_name in ['ASSIN 2 STS', 'FaQUaD-NLI', 'HateBR'] for _, display_name in [(name, NAPOLAB_DATASETS[name].get('name', name)) for name in sorted(NAPOLAB_DATASETS.keys())]] + [True, 80, True, True, True, True, "", 0])), outputs=model_scatter_plot)
# Load benchmark table on app start
app.load(lambda: update_benchmark_table(*([display_name in ['ASSIN 2 STS', 'FaQUaD-NLI', 'HateBR'] for _, display_name in [(name, NAPOLAB_DATASETS[name].get('name', name)) for name in sorted(NAPOLAB_DATASETS.keys())]] + [True, 80, True, True, True, True, "", 0])), outputs=benchmark_table)
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860) |