Spaces:
Sleeping
Sleeping
File size: 9,086 Bytes
0855f92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
#!/usr/bin/env python3
"""
Data Management Utility for Napolab Leaderboard
This script provides utilities to manage, validate, and update the YAML data file.
"""
import yaml
import argparse
from pathlib import Path
from data_loader import NapolabDataLoader
from typing import Dict, Any
def validate_yaml_structure(data: Dict[str, Any]) -> bool:
"""Validate the YAML data structure."""
print("π Validating YAML structure...")
required_sections = ['datasets', 'benchmark_results', 'model_metadata']
for section in required_sections:
if section not in data:
print(f"β Missing required section: {section}")
return False
print(f"β
Found section: {section}")
# Validate datasets
print("\nπ Validating datasets...")
for dataset_name, dataset_info in data['datasets'].items():
required_fields = ['name', 'description', 'tasks', 'url']
for field in required_fields:
if field not in dataset_info:
print(f"β Dataset '{dataset_name}' missing field: {field}")
return False
print(f"β
Dataset '{dataset_name}' is valid")
# Validate benchmark results
print("\nπ Validating benchmark results...")
for dataset_name, models in data['benchmark_results'].items():
if dataset_name not in data['datasets']:
print(f"β οΈ Warning: Benchmark for '{dataset_name}' but no dataset info found")
for model_name, metrics in models.items():
if not isinstance(metrics, dict):
print(f"β Invalid metrics format for model '{model_name}'")
return False
print(f"β
Model '{model_name}' has {len(metrics)} metrics")
# Validate model metadata
print("\nπ€ Validating model metadata...")
for model_name, metadata in data['model_metadata'].items():
required_fields = ['parameters', 'architecture', 'base_model', 'task']
for field in required_fields:
if field not in metadata:
print(f"β Model '{model_name}' missing field: {field}")
return False
print(f"β
Model '{model_name}' is valid")
print("\nπ All validations passed!")
return True
def create_sample_data() -> Dict[str, Any]:
"""Create a sample data structure."""
return {
'datasets': {
'sample_dataset': {
'name': 'Sample Dataset',
'description': 'A sample dataset for testing',
'tasks': ['Classification'],
'url': 'https://huggingface.co/datasets/sample'
}
},
'benchmark_results': {
'sample_dataset': {
'sample-model': {
'accuracy': 0.85,
'f1': 0.84
}
}
},
'model_metadata': {
'sample-model': {
'parameters': 100000000,
'architecture': 'BERT Base',
'base_model': 'bert-base-uncased',
'task': 'Classification',
'huggingface_url': 'https://huggingface.co/sample/model'
}
},
'additional_models': {}
}
def add_dataset(data: Dict[str, Any], dataset_name: str, name: str, description: str,
tasks: list, url: str) -> Dict[str, Any]:
"""Add a new dataset to the data structure."""
data['datasets'][dataset_name] = {
'name': name,
'description': description,
'tasks': tasks,
'url': url
}
print(f"β
Added dataset: {dataset_name}")
return data
def add_benchmark_result(data: Dict[str, Any], dataset_name: str, model_name: str,
metrics: Dict[str, float]) -> Dict[str, Any]:
"""Add benchmark results for a model on a dataset."""
if dataset_name not in data['benchmark_results']:
data['benchmark_results'][dataset_name] = {}
data['benchmark_results'][dataset_name][model_name] = metrics
print(f"β
Added benchmark result for {model_name} on {dataset_name}")
return data
def add_model_metadata(data: Dict[str, Any], model_name: str, parameters: int,
architecture: str, base_model: str, task: str,
huggingface_url: str = None) -> Dict[str, Any]:
"""Add model metadata."""
data['model_metadata'][model_name] = {
'parameters': parameters,
'architecture': architecture,
'base_model': base_model,
'task': task
}
if huggingface_url:
data['model_metadata'][model_name]['huggingface_url'] = huggingface_url
print(f"β
Added model metadata: {model_name}")
return data
def export_data(data: Dict[str, Any], output_file: str) -> None:
"""Export data to a YAML file."""
try:
with open(output_file, 'w', encoding='utf-8') as file:
yaml.dump(data, file, default_flow_style=False, allow_unicode=True, sort_keys=False)
print(f"β
Data exported to {output_file}")
except Exception as e:
print(f"β Error exporting data: {e}")
def main():
"""Main function for command-line interface."""
parser = argparse.ArgumentParser(description='Manage Napolab Leaderboard Data')
parser.add_argument('action', choices=['validate', 'create-sample', 'add-dataset', 'add-benchmark', 'add-model'],
help='Action to perform')
parser.add_argument('--data-file', default='data.yaml', help='Path to data file')
parser.add_argument('--output', help='Output file for export')
# Dataset arguments
parser.add_argument('--dataset-name', help='Dataset name')
parser.add_argument('--dataset-display-name', help='Dataset display name')
parser.add_argument('--dataset-description', help='Dataset description')
parser.add_argument('--dataset-tasks', nargs='+', help='Dataset tasks')
parser.add_argument('--dataset-url', help='Dataset URL')
# Benchmark arguments
parser.add_argument('--model-name', help='Model name')
parser.add_argument('--metrics', nargs='+', help='Metrics as key=value pairs')
# Model metadata arguments
parser.add_argument('--parameters', type=int, help='Number of parameters')
parser.add_argument('--architecture', help='Model architecture')
parser.add_argument('--base-model', help='Base model name')
parser.add_argument('--task', help='Task type')
parser.add_argument('--huggingface-url', help='Hugging Face URL')
args = parser.parse_args()
# Load existing data or create new
data_loader = NapolabDataLoader(args.data_file)
data = data_loader.data
if args.action == 'validate':
if validate_yaml_structure(data):
print("β
Data validation successful!")
else:
print("β Data validation failed!")
return 1
elif args.action == 'create-sample':
data = create_sample_data()
export_data(data, args.output or 'sample_data.yaml')
elif args.action == 'add-dataset':
if not all([args.dataset_name, args.dataset_display_name, args.dataset_description,
args.dataset_tasks, args.dataset_url]):
print("β All dataset arguments are required")
return 1
data = add_dataset(data, args.dataset_name, args.dataset_display_name,
args.dataset_description, args.dataset_tasks, args.dataset_url)
export_data(data, args.data_file)
elif args.action == 'add-benchmark':
if not all([args.dataset_name, args.model_name, args.metrics]):
print("β All benchmark arguments are required")
return 1
# Parse metrics
metrics = {}
for metric in args.metrics:
if '=' in metric:
key, value = metric.split('=', 1)
try:
metrics[key] = float(value)
except ValueError:
print(f"β Invalid metric value: {metric}")
return 1
data = add_benchmark_result(data, args.dataset_name, args.model_name, metrics)
export_data(data, args.data_file)
elif args.action == 'add-model':
if not all([args.model_name, args.parameters, args.architecture,
args.base_model, args.task]):
print("β All model metadata arguments are required")
return 1
data = add_model_metadata(data, args.model_name, args.parameters,
args.architecture, args.base_model, args.task,
args.huggingface_url)
export_data(data, args.data_file)
return 0
if __name__ == "__main__":
exit(main()) |