Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
model_name = "rubenroy/Zurich-1.5B-GCv2-5m"
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 8 |
+
model_name,
|
| 9 |
+
torch_dtype=torch.bfloat16,
|
| 10 |
+
device_map="auto"
|
| 11 |
+
)
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 13 |
+
|
| 14 |
+
@spaces.GPU
|
| 15 |
+
def generate(message, chat_history, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1):
|
| 16 |
+
messages = [
|
| 17 |
+
{"role": "system", "content": "You are a helpul assistant named Zurich, a 1.5 billion parameter Large Language model, you were fine-tuned and trained by Ruben Roy. You have been trained with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations, this was also made by Ruben Roy."}, # Attribution to Qwen is not included to prevent hallucinations.
|
| 18 |
+
{"role": "user", "content": message}
|
| 19 |
+
]
|
| 20 |
+
text = tokenizer.apply_chat_template(
|
| 21 |
+
messages,
|
| 22 |
+
tokenize=False,
|
| 23 |
+
add_generation_prompt=True
|
| 24 |
+
)
|
| 25 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 26 |
+
generated_ids = model.generate(
|
| 27 |
+
**model_inputs,
|
| 28 |
+
temperature=float(temperature),
|
| 29 |
+
top_p=float(top_p),
|
| 30 |
+
top_k=int(top_k),
|
| 31 |
+
max_new_tokens=int(max_new_tokens),
|
| 32 |
+
repetition_penalty=float(repetition_penalty),
|
| 33 |
+
do_sample=True if float(temperature) > 0 else False
|
| 34 |
+
)
|
| 35 |
+
generated_ids = [
|
| 36 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 37 |
+
]
|
| 38 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 39 |
+
return response
|
| 40 |
+
|
| 41 |
+
TITLE_HTML = """
|
| 42 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css">
|
| 43 |
+
<style>
|
| 44 |
+
.model-btn {
|
| 45 |
+
background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%);
|
| 46 |
+
color: white !important;
|
| 47 |
+
padding: 0.75rem 1rem;
|
| 48 |
+
border-radius: 0.5rem;
|
| 49 |
+
text-decoration: none !important;
|
| 50 |
+
font-weight: 500;
|
| 51 |
+
transition: all 0.2s ease;
|
| 52 |
+
font-size: 0.9rem;
|
| 53 |
+
display: flex;
|
| 54 |
+
align-items: center;
|
| 55 |
+
justify-content: center;
|
| 56 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 57 |
+
}
|
| 58 |
+
.model-btn:hover {
|
| 59 |
+
background: linear-gradient(135deg, #1d4ed8 0%, #1e40af 100%);
|
| 60 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.2);
|
| 61 |
+
}
|
| 62 |
+
.model-section {
|
| 63 |
+
flex: 1;
|
| 64 |
+
max-width: 450px;
|
| 65 |
+
background: rgba(255, 255, 255, 0.05);
|
| 66 |
+
padding: 1.5rem;
|
| 67 |
+
border-radius: 1rem;
|
| 68 |
+
border: 1px solid rgba(255, 255, 255, 0.1);
|
| 69 |
+
backdrop-filter: blur(10px);
|
| 70 |
+
transition: all 0.3s ease;
|
| 71 |
+
}
|
| 72 |
+
.info-link {
|
| 73 |
+
color: #60a5fa;
|
| 74 |
+
text-decoration: none;
|
| 75 |
+
transition: color 0.2s ease;
|
| 76 |
+
}
|
| 77 |
+
.info-link:hover {
|
| 78 |
+
color: #93c5fd;
|
| 79 |
+
text-decoration: underline;
|
| 80 |
+
}
|
| 81 |
+
.info-section {
|
| 82 |
+
margin-top: 0.5rem;
|
| 83 |
+
font-size: 0.9rem;
|
| 84 |
+
color: #94a3b8;
|
| 85 |
+
}
|
| 86 |
+
.settings-section {
|
| 87 |
+
background: rgba(255, 255, 255, 0.05);
|
| 88 |
+
padding: 1.5rem;
|
| 89 |
+
border-radius: 1rem;
|
| 90 |
+
margin: 1.5rem auto;
|
| 91 |
+
border: 1px solid rgba(255, 255, 255, 0.1);
|
| 92 |
+
max-width: 800px;
|
| 93 |
+
}
|
| 94 |
+
.settings-title {
|
| 95 |
+
color: #e2e8f0;
|
| 96 |
+
font-size: 1.25rem;
|
| 97 |
+
font-weight: 600;
|
| 98 |
+
margin-bottom: 1rem;
|
| 99 |
+
display: flex;
|
| 100 |
+
align-items: center;
|
| 101 |
+
gap: 0.7rem;
|
| 102 |
+
}
|
| 103 |
+
.parameter-info {
|
| 104 |
+
color: #94a3b8;
|
| 105 |
+
font-size: 0.8rem;
|
| 106 |
+
margin-top: 0.25rem;
|
| 107 |
+
}
|
| 108 |
+
</style>
|
| 109 |
+
|
| 110 |
+
<div style="background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%); padding: 1.5rem; border-radius: 1.5rem; text-align: center; margin: 1rem auto; max-width: 1200px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);">
|
| 111 |
+
<div style="margin-bottom: 1.5rem;">
|
| 112 |
+
<div style="display: flex; align-items: center; justify-content: center; gap: 1rem;">
|
| 113 |
+
<h1 style="font-size: 2.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #60a5fa 0%, #93c5fd 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent;">Zurich</h1>
|
| 114 |
+
<div style="width: 2px; height: 2.5rem; background: linear-gradient(180deg, #3b82f6 0%, #60a5fa 100%);"></div>
|
| 115 |
+
<p style="font-size: 1.25rem; color: #94a3b8; margin: 0;">GammaCorpus v2-5m</p>
|
| 116 |
+
</div>
|
| 117 |
+
<div class="info-section">
|
| 118 |
+
<span>Fine-tuned from <a href="https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct" class="info-link">Qwen 2.5 1.5B Instruct</a> | Model: <a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-5m" class="info-link">Zurich-1.5B-GCv2-5m</a> | Training Dataset: <a href="https://huggingface.co/datasets/rubenroy/GammaCorpus-v2-5m" class="info-link">GammaCorpus v2 5m</a></span>
|
| 119 |
+
</div>
|
| 120 |
+
</div>
|
| 121 |
+
|
| 122 |
+
<div style="display: flex; gap: 1.5rem; justify-content: center; flex-wrap: wrap;">
|
| 123 |
+
<div class="model-section">
|
| 124 |
+
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;">
|
| 125 |
+
<i class="fas fa-microchip"></i>
|
| 126 |
+
1.5B Models
|
| 127 |
+
</h2>
|
| 128 |
+
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 0.75rem;">
|
| 129 |
+
<a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-5m" class="model-btn">Zurich 1.5B GCv2 5m</a>
|
| 130 |
+
<a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-1m" class="model-btn">Zurich 1.5B GCv2 1m</a>
|
| 131 |
+
<a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-500k" class="model-btn">Zurich 1.5B GCv2 500k</a>
|
| 132 |
+
<a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-100k" class="model-btn">Zurich 1.5B GCv2 100k</a>
|
| 133 |
+
<a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-50k" class="model-btn">Zurich 1.5B GCv2 50k</a>
|
| 134 |
+
<a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-10k" class="model-btn">Zurich 1.5B GCv2 10k</a>
|
| 135 |
+
</div>
|
| 136 |
+
</div>
|
| 137 |
+
<div class="model-section">
|
| 138 |
+
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;">
|
| 139 |
+
<i class="fas fa-brain"></i>
|
| 140 |
+
7B Models
|
| 141 |
+
</h2>
|
| 142 |
+
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 0.75rem;">
|
| 143 |
+
<a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-5m" class="model-btn">Zurich 7B GCv2 5m</a>
|
| 144 |
+
<a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-1m" class="model-btn">Zurich 7B GCv2 1m</a>
|
| 145 |
+
<a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-500k" class="model-btn">Zurich 7B GCv2 500k</a>
|
| 146 |
+
<a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-100k" class="model-btn">Zurich 7B GCv2 100k</a>
|
| 147 |
+
<a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-50k" class="model-btn">Zurich 7B GCv2 50k</a>
|
| 148 |
+
<a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-10k" class="model-btn">Zurich 7B GCv2 10k</a>
|
| 149 |
+
</div>
|
| 150 |
+
</div>
|
| 151 |
+
<div class="model-section">
|
| 152 |
+
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;">
|
| 153 |
+
<i class="fas fa-rocket"></i>
|
| 154 |
+
14B Models
|
| 155 |
+
</h2>
|
| 156 |
+
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 0.75rem;">
|
| 157 |
+
<a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-5m" class="model-btn">Zurich 14B GCv2 5m</a>
|
| 158 |
+
<a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-1m" class="model-btn">Zurich 14B GCv2 1m</a>
|
| 159 |
+
<a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-500k" class="model-btn">Zurich 14B GCv2 500k</a>
|
| 160 |
+
<a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-100k" class="model-btn">Zurich 14B GCv2 100k</a>
|
| 161 |
+
<a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-50k" class="model-btn">Zurich 14B GCv2 50k</a>
|
| 162 |
+
<a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-10k" class="model-btn">Zurich 14B GCv2 10k</a>
|
| 163 |
+
</div>
|
| 164 |
+
</div>
|
| 165 |
+
</div>
|
| 166 |
+
</div>
|
| 167 |
+
"""
|
| 168 |
+
|
| 169 |
+
examples = [
|
| 170 |
+
["Explain quantum computing in simple terms"],
|
| 171 |
+
["Write a short story about a time traveler"],
|
| 172 |
+
["Explain the process of photosynthesis"],
|
| 173 |
+
["Tell me an intersting fact about Palm trees"]
|
| 174 |
+
]
|
| 175 |
+
|
| 176 |
+
with gr.Blocks() as demo:
|
| 177 |
+
gr.HTML(TITLE_HTML)
|
| 178 |
+
|
| 179 |
+
with gr.Accordion("Generation Settings", open=False):
|
| 180 |
+
with gr.Row():
|
| 181 |
+
with gr.Column():
|
| 182 |
+
temperature = gr.Slider(
|
| 183 |
+
minimum=0.0,
|
| 184 |
+
maximum=2.0,
|
| 185 |
+
value=0.7,
|
| 186 |
+
step=0.1,
|
| 187 |
+
label="Temperature",
|
| 188 |
+
info="Higher values make the output more random, lower values make it more deterministic",
|
| 189 |
+
interactive=True
|
| 190 |
+
)
|
| 191 |
+
top_p = gr.Slider(
|
| 192 |
+
minimum=0.0,
|
| 193 |
+
maximum=1.0,
|
| 194 |
+
value=0.9,
|
| 195 |
+
step=0.05,
|
| 196 |
+
label="Top P",
|
| 197 |
+
info="Controls the cumulative probability threshold for nucleus sampling",
|
| 198 |
+
interactive=True
|
| 199 |
+
)
|
| 200 |
+
top_k = gr.Slider(
|
| 201 |
+
minimum=1,
|
| 202 |
+
maximum=100,
|
| 203 |
+
value=50,
|
| 204 |
+
step=1,
|
| 205 |
+
label="Top K",
|
| 206 |
+
info="Limits the number of tokens to consider for each generation step",
|
| 207 |
+
interactive=True
|
| 208 |
+
)
|
| 209 |
+
with gr.Column():
|
| 210 |
+
max_new_tokens = gr.Slider(
|
| 211 |
+
minimum=1,
|
| 212 |
+
maximum=2048,
|
| 213 |
+
value=512,
|
| 214 |
+
step=1,
|
| 215 |
+
label="Max New Tokens",
|
| 216 |
+
info="Maximum number of tokens to generate in the response",
|
| 217 |
+
interactive=True
|
| 218 |
+
)
|
| 219 |
+
repetition_penalty = gr.Slider(
|
| 220 |
+
minimum=1.0,
|
| 221 |
+
maximum=2.0,
|
| 222 |
+
value=1.1,
|
| 223 |
+
step=0.1,
|
| 224 |
+
label="Repetition Penalty",
|
| 225 |
+
info="Higher values stop the model from repeating the same info",
|
| 226 |
+
interactive=True
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
chatbot = gr.ChatInterface(
|
| 230 |
+
fn=generate,
|
| 231 |
+
additional_inputs=[
|
| 232 |
+
temperature,
|
| 233 |
+
top_p,
|
| 234 |
+
top_k,
|
| 235 |
+
max_new_tokens,
|
| 236 |
+
repetition_penalty
|
| 237 |
+
],
|
| 238 |
+
examples=examples
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
demo.launch(share=True)
|