File size: 4,775 Bytes
1a22b81
 
f196196
1a22b81
f196196
 
1a22b81
4e2e420
f196196
 
1a22b81
 
 
 
 
 
 
 
f196196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a22b81
f196196
 
 
 
 
 
 
 
1a22b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f196196
 
1a22b81
 
 
 
8e79c3b
 
 
 
f196196
8e79c3b
 
1a22b81
 
8e79c3b
4706d9e
 
 
f196196
 
 
4706d9e
f196196
 
 
8e79c3b
4706d9e
f196196
209496a
1a22b81
8e79c3b
1a22b81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
from typing import Iterator

model_name = "rubenroy/Zurich-14B-GCv2-5m"
MAX_INPUT_TOKEN_LENGTH = 4096

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

@spaces.GPU
def generate(message: str, chat_history: list[tuple[str, str]], temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1) -> Iterator[str]:
    """Generates text responses using Zurich model with streaming."""
    
    conversation = []
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})
    
    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    
    input_ids = input_ids.to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True if float(temperature) > 0 else False,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=repetition_penalty
    )
    
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    
    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

TITLE_HTML = """
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css">
<style>
    .model-btn {
        background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%);
        color: white !important;
        padding: 0.75rem 1rem;
        border-radius: 0.5rem;
        text-decoration: none !important;
        font-weight: 500;
        transition: all 0.2s ease;
        font-size: 0.9rem;
        display: flex;
        align-items: center;
        justify-content: center;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    }
    .model-btn:hover {
        background: linear-gradient(135deg, #1d4ed8 0%, #1e40af 100%);
        box-shadow: 0 4px 6px rgba(0,0,0,0.2);
    }
    .model-section {
        flex: 1;
        max-width: 450px;
        background: rgba(255, 255, 255, 0.05);
        padding: 1.5rem;
        border-radius: 1rem;
        border: 1px solid rgba(255, 255, 255, 0.1);
        backdrop-filter: blur(10px);
        transition: all 0.3s ease;
    }
</style>

<div style="background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%); padding: 1.5rem; border-radius: 1.5rem; text-align: center; margin: 1rem auto; max-width: 1200px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);">
    <div style="margin-bottom: 1.5rem;">
        <h1 style="font-size: 2.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #60a5fa 0%, #93c5fd 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent;">Zurich</h1>
        <p style="font-size: 1.25rem; color: #94a3b8; margin: 0;">GammaCorpus v2-5m</p>
    </div>
</div>
"""

examples = [
    ["Explain quantum computing in simple terms"],
    ["Write a short story about a time traveler"],
    ["Explain the process of photosynthesis"],
    ["Tell me an interesting fact about Palm trees"]
]

with gr.Blocks() as demo:
    gr.HTML(TITLE_HTML)
    
    with gr.Accordion("Generation Settings", open=False):
        with gr.Row():
            with gr.Column():
                temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.1, label="Temperature", info="Higher values make the output more random")
                top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top P", info="Controls nucleus sampling")
                top_k = gr.Slider(1, 100, value=50, step=1, label="Top K", info="Limits vocabulary choices per step")
            with gr.Column():
                max_new_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max New Tokens", info="Limits response length")
                repetition_penalty = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty", info="Discourages repeated phrases")

    chatbot = gr.ChatInterface(
        fn=generate,
        additional_inputs=[temperature, top_p, top_k, max_new_tokens, repetition_penalty],
        examples=examples
    )

demo.launch(share=True)