rubenroy commited on
Commit
1043f3b
Β·
verified Β·
1 Parent(s): ba8fd34

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +152 -49
app.py CHANGED
@@ -1,13 +1,9 @@
1
  import gradio as gr
2
  import spaces
3
- from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
4
  import torch
5
- from threading import Thread
6
- from typing import Iterator
7
 
8
  model_name = "rubenroy/Zurich-14B-GCv2-5m"
9
- MAX_INPUT_TOKEN_LENGTH = 4096
10
-
11
  model = AutoModelForCausalLM.from_pretrained(
12
  model_name,
13
  torch_dtype=torch.bfloat16,
@@ -16,43 +12,31 @@ model = AutoModelForCausalLM.from_pretrained(
16
  tokenizer = AutoTokenizer.from_pretrained(model_name)
17
 
18
  @spaces.GPU
19
- def generate(message: str, chat_history: list[tuple[str, str]], temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1) -> Iterator[str]:
20
  messages = [
21
- {"role": "system", "content": "You are a helpful assistant named Zurich, a 7 billion parameter Large Language Model, fine-tuned and trained by Ruben Roy. You have been trained with the GammaCorpus v2 dataset, a structured and filtered multi-turn conversation dataset created by Ruben Roy."}
 
22
  ]
23
-
24
- for user, assistant in chat_history:
25
- messages.append({"role": "user", "content": user})
26
- messages.append({"role": "assistant", "content": assistant})
27
- messages.append({"role": "user", "content": message})
28
-
29
- input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt")
30
-
31
- if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
32
- input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
33
- gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
34
-
35
- input_ids = input_ids.to(model.device)
36
-
37
- streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True, clean_up_tokenization_spaces=True)
38
- generate_kwargs = dict(
39
- {"input_ids": input_ids},
40
- streamer=streamer,
41
- max_new_tokens=max_new_tokens,
42
- do_sample=True if float(temperature) > 0 else False,
43
- top_p=top_p,
44
- top_k=top_k,
45
- temperature=temperature,
46
- repetition_penalty=repetition_penalty
47
  )
48
-
49
- t = Thread(target=model.generate, kwargs=generate_kwargs)
50
- t.start()
51
-
52
- outputs = []
53
- for text in streamer:
54
- outputs.append(text)
55
- yield "".join(outputs)
 
 
 
 
 
 
 
56
 
57
  TITLE_HTML = """
58
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css">
@@ -85,12 +69,85 @@ TITLE_HTML = """
85
  backdrop-filter: blur(10px);
86
  transition: all 0.3s ease;
87
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  </style>
89
 
90
  <div style="background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%); padding: 1.5rem; border-radius: 1.5rem; text-align: center; margin: 1rem auto; max-width: 1200px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);">
91
  <div style="margin-bottom: 1.5rem;">
92
- <h1 style="font-size: 2.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #60a5fa 0%, #93c5fd 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent;">Zurich</h1>
93
- <p style="font-size: 1.25rem; color: #94a3b8; margin: 0;">GammaCorpus v2-5m</p>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  </div>
95
  </div>
96
  """
@@ -99,7 +156,7 @@ examples = [
99
  ["Explain quantum computing in simple terms"],
100
  ["Write a short story about a time traveler"],
101
  ["Explain the process of photosynthesis"],
102
- ["Tell me an interesting fact about Palm trees"]
103
  ]
104
 
105
  with gr.Blocks() as demo:
@@ -108,16 +165,62 @@ with gr.Blocks() as demo:
108
  with gr.Accordion("Generation Settings", open=False):
109
  with gr.Row():
110
  with gr.Column():
111
- temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.1, label="Temperature", info="Higher values make the output more random")
112
- top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top P", info="Controls nucleus sampling")
113
- top_k = gr.Slider(1, 100, value=50, step=1, label="Top K", info="Limits vocabulary choices per step")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  with gr.Column():
115
- max_new_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max New Tokens", info="Limits response length")
116
- repetition_penalty = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty", info="Discourages repeated phrases")
117
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  chatbot = gr.ChatInterface(
119
  fn=generate,
120
- additional_inputs=[temperature, top_p, top_k, max_new_tokens, repetition_penalty],
 
 
 
 
 
 
121
  examples=examples
122
  )
123
 
 
1
  import gradio as gr
2
  import spaces
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
  import torch
 
 
5
 
6
  model_name = "rubenroy/Zurich-14B-GCv2-5m"
 
 
7
  model = AutoModelForCausalLM.from_pretrained(
8
  model_name,
9
  torch_dtype=torch.bfloat16,
 
12
  tokenizer = AutoTokenizer.from_pretrained(model_name)
13
 
14
  @spaces.GPU
15
+ def generate(message, chat_history, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1):
16
  messages = [
17
+ {"role": "system", "content": "You are a helpul assistant named Zurich, a 14 billion parameter Large Language model, you were fine-tuned and trained by Ruben Roy. You have been trained with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations, this was also made by Ruben Roy."}, # Attribution to Qwen is not included to prevent hallucinations.
18
+ {"role": "user", "content": message}
19
  ]
20
+ text = tokenizer.apply_chat_template(
21
+ messages,
22
+ tokenize=False,
23
+ add_generation_prompt=True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  )
25
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
26
+ generated_ids = model.generate(
27
+ **model_inputs,
28
+ temperature=float(temperature),
29
+ top_p=float(top_p),
30
+ top_k=int(top_k),
31
+ max_new_tokens=int(max_new_tokens),
32
+ repetition_penalty=float(repetition_penalty),
33
+ do_sample=True if float(temperature) > 0 else False
34
+ )
35
+ generated_ids = [
36
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
37
+ ]
38
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
39
+ return response
40
 
41
  TITLE_HTML = """
42
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css">
 
69
  backdrop-filter: blur(10px);
70
  transition: all 0.3s ease;
71
  }
72
+ .info-link {
73
+ color: #60a5fa;
74
+ text-decoration: none;
75
+ transition: color 0.2s ease;
76
+ }
77
+ .info-link:hover {
78
+ color: #93c5fd;
79
+ text-decoration: underline;
80
+ }
81
+ .info-section {
82
+ margin-top: 0.5rem;
83
+ font-size: 0.9rem;
84
+ color: #94a3b8;
85
+ }
86
+ .settings-section {
87
+ background: rgba(255, 255, 255, 0.05);
88
+ padding: 1.5rem;
89
+ border-radius: 1rem;
90
+ margin: 1.5rem auto;
91
+ border: 1px solid rgba(255, 255, 255, 0.1);
92
+ max-width: 800px;
93
+ }
94
+ .settings-title {
95
+ color: #e2e8f0;
96
+ font-size: 1.25rem;
97
+ font-weight: 600;
98
+ margin-bottom: 1rem;
99
+ display: flex;
100
+ align-items: center;
101
+ gap: 0.7rem;
102
+ }
103
+ .parameter-info {
104
+ color: #94a3b8;
105
+ font-size: 0.8rem;
106
+ margin-top: 0.25rem;
107
+ }
108
  </style>
109
 
110
  <div style="background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%); padding: 1.5rem; border-radius: 1.5rem; text-align: center; margin: 1rem auto; max-width: 1200px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);">
111
  <div style="margin-bottom: 1.5rem;">
112
+ <div style="display: flex; align-items: center; justify-content: center; gap: 1rem;">
113
+ <h1 style="font-size: 2.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #60a5fa 0%, #93c5fd 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent;">Zurich</h1>
114
+ <div style="width: 2px; height: 2.5rem; background: linear-gradient(180deg, #3b82f6 0%, #60a5fa 100%);"></div>
115
+ <p style="font-size: 1.25rem; color: #94a3b8; margin: 0;">GammaCorpus v2-5m</p>
116
+ </div>
117
+ <div class="info-section">
118
+ <span>Fine-tuned from <a href="https://huggingface.co/Qwen/Qwen2.5-14B-Instruct" class="info-link">Qwen 2.5 14B Instruct</a> | Model: <a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-5m" class="info-link">Zurich-14B-GCv2-5m</a> | Training Dataset: <a href="https://huggingface.co/datasets/rubenroy/GammaCorpus-v2-5m" class="info-link">GammaCorpus v2 5m</a></span>
119
+ </div>
120
+ </div>
121
+
122
+ <div style="display: flex; gap: 1.5rem; justify-content: center;">
123
+ <div class="model-section">
124
+ <h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;">
125
+ <i class="fas fa-brain"></i>
126
+ 7B Models
127
+ </h2>
128
+ <div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 0.75rem;">
129
+ <a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-5m" class="model-btn">Zurich 7B GCv2 5m</a>
130
+ <a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-1m" class="model-btn">Zurich 7B GCv2 1m</a>
131
+ <a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-500k" class="model-btn">Zurich 7B GCv2 500k</a>
132
+ <a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-100k" class="model-btn">Zurich 7B GCv2 100k</a>
133
+ <a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-50k" class="model-btn">Zurich 7B GCv2 50k</a>
134
+ <a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-10k" class="model-btn">Zurich 7B GCv2 10k</a>
135
+ </div>
136
+ </div>
137
+ <div class="model-section">
138
+ <h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;">
139
+ <i class="fas fa-rocket"></i>
140
+ 14B Models
141
+ </h2>
142
+ <div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 0.75rem;">
143
+ <a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-5m" class="model-btn">Zurich 14B GCv2 5m</a>
144
+ <a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-1m" class="model-btn">Zurich 14B GCv2 1m</a>
145
+ <a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-500k" class="model-btn">Zurich 14B GCv2 500k</a>
146
+ <a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-100k" class="model-btn">Zurich 14B GCv2 100k</a>
147
+ <a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-50k" class="model-btn">Zurich 14B GCv2 50k</a>
148
+ <a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-10k" class="model-btn">Zurich 14B GCv2 10k</a>
149
+ </div>
150
+ </div>
151
  </div>
152
  </div>
153
  """
 
156
  ["Explain quantum computing in simple terms"],
157
  ["Write a short story about a time traveler"],
158
  ["Explain the process of photosynthesis"],
159
+ ["Tell me an intersting fact about Palm trees"]
160
  ]
161
 
162
  with gr.Blocks() as demo:
 
165
  with gr.Accordion("Generation Settings", open=False):
166
  with gr.Row():
167
  with gr.Column():
168
+ temperature = gr.Slider(
169
+ minimum=0.0,
170
+ maximum=2.0,
171
+ value=0.7,
172
+ step=0.1,
173
+ label="Temperature",
174
+ info="Higher values make the output more random, lower values make it more deterministic",
175
+ interactive=True
176
+ )
177
+ top_p = gr.Slider(
178
+ minimum=0.0,
179
+ maximum=1.0,
180
+ value=0.9,
181
+ step=0.05,
182
+ label="Top P",
183
+ info="Controls the cumulative probability threshold for nucleus sampling",
184
+ interactive=True
185
+ )
186
+ top_k = gr.Slider(
187
+ minimum=1,
188
+ maximum=100,
189
+ value=50,
190
+ step=1,
191
+ label="Top K",
192
+ info="Limits the number of tokens to consider for each generation step",
193
+ interactive=True
194
+ )
195
  with gr.Column():
196
+ max_new_tokens = gr.Slider(
197
+ minimum=1,
198
+ maximum=2048,
199
+ value=512,
200
+ step=1,
201
+ label="Max New Tokens",
202
+ info="Maximum number of tokens to generate in the response",
203
+ interactive=True
204
+ )
205
+ repetition_penalty = gr.Slider(
206
+ minimum=1.0,
207
+ maximum=2.0,
208
+ value=1.1,
209
+ step=0.1,
210
+ label="Repetition Penalty",
211
+ info="Higher values stop the model from repeating the same info",
212
+ interactive=True
213
+ )
214
+
215
  chatbot = gr.ChatInterface(
216
  fn=generate,
217
+ additional_inputs=[
218
+ temperature,
219
+ top_p,
220
+ top_k,
221
+ max_new_tokens,
222
+ repetition_penalty
223
+ ],
224
  examples=examples
225
  )
226