import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "rubenroy/Zurich-7b-GCv2-5m" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) @spaces.GPU def generate(prompt, history): messages = [ {"role": "system", "content": "You are Zurich, a 7 billion parameter Large Language model built on the Qwen 2.5 7B model developed by Alibaba Cloud, and fine-tuned by Ruben Roy. You have been fine-tuned with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations and was also created by Ruben Roy. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response TITLE_HTML = """
GammaCorpus v2-5m