Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,65 @@
|
|
1 |
-
from transformers import AutoImageProcessor, SiglipForImageClassification
|
2 |
-
from PIL import Image
|
3 |
import gradio as gr
|
|
|
|
|
4 |
import torch
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
with torch.no_grad():
|
15 |
-
outputs = model(**inputs)
|
16 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
17 |
-
id2label = { "0": "Fake", "1": "Real" }
|
18 |
-
return { id2label[str(i)]: float(probs[i]) for i in range(2) }
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
demo = gr.Interface(
|
21 |
-
fn=
|
22 |
-
inputs=gr.Image(type="
|
23 |
-
outputs=
|
24 |
-
title="Deepfake Detector",
|
25 |
-
description="
|
26 |
)
|
27 |
|
28 |
if __name__ == "__main__":
|
29 |
demo.launch()
|
30 |
-
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
3 |
+
from PIL import Image
|
4 |
import torch
|
5 |
|
6 |
+
# Load multiple models
|
7 |
+
model_names = [
|
8 |
+
"dima806/deepfake_vs_real_image_detection",
|
9 |
+
"BuzzFeedNews/Deepfake-Detection",
|
10 |
+
"umarlai/deepfake-detection-vit"
|
11 |
+
]
|
12 |
+
|
13 |
+
models = []
|
14 |
+
processors = []
|
15 |
+
|
16 |
+
for name in model_names:
|
17 |
+
processors.append(AutoImageProcessor.from_pretrained(name))
|
18 |
+
models.append(AutoModelForImageClassification.from_pretrained(name))
|
19 |
+
|
20 |
+
def predict(image):
|
21 |
+
votes = {"Real": 0, "Fake": 0}
|
22 |
+
probs_list = []
|
23 |
+
|
24 |
+
for model, processor in zip(models, processors):
|
25 |
+
inputs = processor(images=image, return_tensors="pt")
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model(**inputs)
|
28 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
29 |
+
|
30 |
+
# Map outputs depending on model’s labels
|
31 |
+
labels = model.config.id2label
|
32 |
+
result = {labels[i]: float(probs[i]) for i in range(len(labels))}
|
33 |
|
34 |
+
# Normalize labels to Real/Fake
|
35 |
+
real_score = result.get("Real", result.get("REAL", result.get("0", 0)))
|
36 |
+
fake_score = result.get("Fake", result.get("FAKE", result.get("1", 0)))
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
probs_list.append({"Real": real_score, "Fake": fake_score})
|
39 |
+
|
40 |
+
if fake_score > real_score:
|
41 |
+
votes["Fake"] += 1
|
42 |
+
else:
|
43 |
+
votes["Real"] += 1
|
44 |
+
|
45 |
+
# Majority voting
|
46 |
+
final_label = "Fake" if votes["Fake"] > votes["Real"] else "Real"
|
47 |
+
|
48 |
+
# Average probability
|
49 |
+
avg_real = sum([p["Real"] for p in probs_list]) / len(probs_list)
|
50 |
+
avg_fake = sum([p["Fake"] for p in probs_list]) / len(probs_list)
|
51 |
+
|
52 |
+
return {final_label: max(avg_real, avg_fake), "Real": avg_real, "Fake": avg_fake}
|
53 |
+
|
54 |
+
# UI
|
55 |
demo = gr.Interface(
|
56 |
+
fn=predict,
|
57 |
+
inputs=gr.Image(type="pil"),
|
58 |
+
outputs="label",
|
59 |
+
title="🕵️ Deepfake Detector (Ensemble)",
|
60 |
+
description="Uploads an image and checks if it's REAL or FAKE using 3 different models combined."
|
61 |
)
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
65 |
+
|