ruminasval commited on
Commit
ed33d5b
·
verified ·
1 Parent(s): fc0fa35

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +151 -4
app.py CHANGED
@@ -1,3 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Gradio Interface
2
  with gr.Blocks(theme=gr.themes.Soft()) as iface:
3
  gr.Markdown("# Program Rekomendasi Kacamata Berdasarkan Bentuk Wajah")
@@ -5,8 +155,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
5
 
6
  with gr.Row():
7
  with gr.Column():
8
- image_input = gr.Image(type="pil", image_mode="single", interactive=False, label="Unggah Gambar") # Changed to "single" and added label
9
- upload_button = gr.Button("Unggah Gambar") # Add a button to upload the image
10
  confirm_button = gr.Button("Konfirmasi")
11
  restart_button = gr.Button("Restart")
12
  with gr.Column():
@@ -14,8 +163,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
14
  explanation_output = gr.Textbox(label="Penjelasan")
15
  recommendation_gallery = gr.Gallery(label="Rekomendasi Kacamata", columns=3, show_label=False)
16
 
17
- # Adjust the actions
18
- upload_button.click(lambda: None, inputs=None, outputs=[image_input]) # Handle image upload
19
  confirm_button.click(predict, inputs=image_input, outputs=[detected_shape, explanation_output, recommendation_gallery])
20
  restart_button.click(lambda: (None, "", [], []), inputs=None, outputs=[image_input, detected_shape, explanation_output, recommendation_gallery])
21
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import SwinForImageClassification, AutoFeatureExtractor
4
+ import mediapipe as mp
5
+ import cv2
6
+ from PIL import Image
7
+ import numpy as np
8
+ import os
9
+
10
+ # Face shape descriptions
11
+ face_shape_descriptions = {
12
+ "Heart": "dengan dahi lebar dan dagu yang runcing.",
13
+ "Oblong": "yang lebih panjang dari lebar dengan garis pipi lurus.",
14
+ "Oval": "dengan proporsi seimbang dan dagu sedikit melengkung.",
15
+ "Round": "dengan garis rahang melengkung dan pipi penuh.",
16
+ "Square": "dengan rahang tegas dan dahi lebar."
17
+ }
18
+
19
+ # Frame images path
20
+ glasses_images = {
21
+ "Oval": "glasses/oval.jpg",
22
+ "Round": "glasses/round.jpg",
23
+ "Square": "glasses/square.jpg",
24
+ "Octagon": "glasses/octagon.jpg",
25
+ "Cat Eye": "glasses/cat eye.jpg",
26
+ "Pilot (Aviator)": "glasses/aviator.jpg"
27
+ }
28
+
29
+ # Ensure the 'glasses' directory exists and contains the images
30
+ if not os.path.exists("glasses"):
31
+ os.makedirs("glasses")
32
+ # Create dummy image files if they don't exist
33
+ for _, path in glasses_images.items():
34
+ if not os.path.exists(path):
35
+ dummy_image = Image.new('RGB', (200, 100), color='gray')
36
+ dummy_image.save(path)
37
+
38
+ id2label = {0: 'Heart', 1: 'Oblong', 2: 'Oval', 3: 'Round', 4: 'Square'}
39
+ label2id = {v: k for k, v in id2label.items()}
40
+
41
+ # Load model
42
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
43
+ model_checkpoint = "microsoft/swin-tiny-patch4-window7-224"
44
+ feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint)
45
+
46
+ model = SwinForImageClassification.from_pretrained(
47
+ model_checkpoint,
48
+ label2id=label2id,
49
+ id2label=id2label,
50
+ ignore_mismatched_sizes=True
51
+ )
52
+
53
+ # Load your trained weights
54
+ # Ensure 'LR-0001-adamW-32-64swin.pth' is in the same directory or provide the correct path
55
+ if os.path.exists('LR-0001-adamW-32-64swin.pth'):
56
+ state_dict = torch.load('LR-0001-adamW-32-64swin.pth', map_location=device)
57
+ model.load_state_dict(state_dict, strict=False)
58
+ model.to(device)
59
+ model.eval()
60
+ else:
61
+ print("Warning: Trained weights file 'LR-0001-adamW-32-64swin.pth' not found. Using pre-trained weights only.")
62
+
63
+ # Initialize Mediapipe
64
+ mp_face_detection = mp.solutions.face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5)
65
+
66
+ # --- New: Decision tree function
67
+ def recommend_glasses_tree(face_shape):
68
+ face_shape = face_shape.lower()
69
+ if face_shape == "square":
70
+ return ["Oval", "Round"]
71
+ elif face_shape == "round":
72
+ return ["Square", "Octagon", "Cat Eye"]
73
+ elif face_shape == "oval":
74
+ return ["Oval", "Pilot (Aviator)", "Cat Eye", "Round"]
75
+ elif face_shape == "heart":
76
+ return ["Pilot (Aviator)", "Cat Eye", "Round"]
77
+ elif face_shape == "oblong":
78
+ return ["Square", "Oval", "Pilot (Aviator)", "Cat Eye"]
79
+ else:
80
+ return []
81
+
82
+ # Preprocess function
83
+ def preprocess_image(image):
84
+ img = np.array(image, dtype=np.uint8)
85
+ img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
86
+
87
+ results = mp_face_detection.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
88
+
89
+ if results.detections:
90
+ detection = results.detections[0]
91
+ bbox = detection.location_data.relative_bounding_box
92
+ h, w, _ = img.shape
93
+ x1 = int(bbox.xmin * w)
94
+ y1 = int(bbox.ymin * h)
95
+ x2 = int((bbox.xmin + bbox.width) * w)
96
+ y2 = int((bbox.ymin + bbox.height) * h)
97
+
98
+ img = img[y1:y2, x1:x2]
99
+ else:
100
+ raise ValueError("Wajah tidak terdeteksi.")
101
+
102
+ img = cv2.resize(img, (224, 224))
103
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
104
+ inputs = feature_extractor(images=img, return_tensors="pt")
105
+ return inputs['pixel_values'].squeeze(0)
106
+
107
+ # Prediction function
108
+ def predict(image):
109
+ try:
110
+ inputs = preprocess_image(image).unsqueeze(0).to(device)
111
+ with torch.no_grad():
112
+ outputs = model(inputs)
113
+ probs = torch.nn.functional.softmax(outputs.logits, dim=1)
114
+ pred_idx = torch.argmax(probs, dim=1).item()
115
+ pred_label = id2label[pred_idx]
116
+ pred_prob = probs[0][pred_idx].item() * 100
117
+
118
+ # --- Use decision tree for recommendations
119
+ frame_recommendations = recommend_glasses_tree(pred_label)
120
+
121
+ description = face_shape_descriptions.get(pred_label, "tidak dikenali")
122
+ gallery_items = []
123
+
124
+ # Load images for all recommended frames
125
+ for frame in frame_recommendations:
126
+ frame_image_path = glasses_images.get(frame)
127
+ if frame_image_path and os.path.exists(frame_image_path):
128
+ try:
129
+ frame_image = Image.open(frame_image_path)
130
+ gallery_items.append((frame_image, frame)) # Tambahkan nama frame
131
+ except Exception as e:
132
+ print(f"Error loading image for {frame}: {e}")
133
+
134
+ # Build explanation text
135
+ if frame_recommendations:
136
+ recommended_frames_text = ', '.join(frame_recommendations)
137
+ explanation = (f"Bentuk wajah kamu adalah {pred_label} ({pred_prob:.2f}%). "
138
+ f"Kamu memiliki bentuk wajah {description} "
139
+ f"Rekomendasi bentuk kacamata yang sesuai dengan wajah kamu adalah: {recommended_frames_text}.")
140
+ else:
141
+ explanation = (f"Bentuk wajah kamu adalah {pred_label} ({pred_prob:.2f}%). "
142
+ f"Tidak ada rekomendasi frame untuk bentuk wajah ini.")
143
+
144
+ return pred_label, explanation, gallery_items
145
+
146
+ except ValueError as ve:
147
+ return "Error", str(ve), []
148
+ except Exception as e:
149
+ return "Error", f"Terjadi kesalahan: {str(e)}", []
150
+
151
  # Gradio Interface
152
  with gr.Blocks(theme=gr.themes.Soft()) as iface:
153
  gr.Markdown("# Program Rekomendasi Kacamata Berdasarkan Bentuk Wajah")
 
155
 
156
  with gr.Row():
157
  with gr.Column():
158
+ image_input = gr.Image(type="pil")
 
159
  confirm_button = gr.Button("Konfirmasi")
160
  restart_button = gr.Button("Restart")
161
  with gr.Column():
 
163
  explanation_output = gr.Textbox(label="Penjelasan")
164
  recommendation_gallery = gr.Gallery(label="Rekomendasi Kacamata", columns=3, show_label=False)
165
 
 
 
166
  confirm_button.click(predict, inputs=image_input, outputs=[detected_shape, explanation_output, recommendation_gallery])
167
  restart_button.click(lambda: (None, "", [], []), inputs=None, outputs=[image_input, detected_shape, explanation_output, recommendation_gallery])
168