Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Gradio Interface
|
2 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
3 |
gr.Markdown("# Program Rekomendasi Kacamata Berdasarkan Bentuk Wajah")
|
@@ -5,8 +155,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
5 |
|
6 |
with gr.Row():
|
7 |
with gr.Column():
|
8 |
-
image_input = gr.Image(type="pil"
|
9 |
-
upload_button = gr.Button("Unggah Gambar") # Add a button to upload the image
|
10 |
confirm_button = gr.Button("Konfirmasi")
|
11 |
restart_button = gr.Button("Restart")
|
12 |
with gr.Column():
|
@@ -14,8 +163,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
14 |
explanation_output = gr.Textbox(label="Penjelasan")
|
15 |
recommendation_gallery = gr.Gallery(label="Rekomendasi Kacamata", columns=3, show_label=False)
|
16 |
|
17 |
-
# Adjust the actions
|
18 |
-
upload_button.click(lambda: None, inputs=None, outputs=[image_input]) # Handle image upload
|
19 |
confirm_button.click(predict, inputs=image_input, outputs=[detected_shape, explanation_output, recommendation_gallery])
|
20 |
restart_button.click(lambda: (None, "", [], []), inputs=None, outputs=[image_input, detected_shape, explanation_output, recommendation_gallery])
|
21 |
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import SwinForImageClassification, AutoFeatureExtractor
|
4 |
+
import mediapipe as mp
|
5 |
+
import cv2
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
import os
|
9 |
+
|
10 |
+
# Face shape descriptions
|
11 |
+
face_shape_descriptions = {
|
12 |
+
"Heart": "dengan dahi lebar dan dagu yang runcing.",
|
13 |
+
"Oblong": "yang lebih panjang dari lebar dengan garis pipi lurus.",
|
14 |
+
"Oval": "dengan proporsi seimbang dan dagu sedikit melengkung.",
|
15 |
+
"Round": "dengan garis rahang melengkung dan pipi penuh.",
|
16 |
+
"Square": "dengan rahang tegas dan dahi lebar."
|
17 |
+
}
|
18 |
+
|
19 |
+
# Frame images path
|
20 |
+
glasses_images = {
|
21 |
+
"Oval": "glasses/oval.jpg",
|
22 |
+
"Round": "glasses/round.jpg",
|
23 |
+
"Square": "glasses/square.jpg",
|
24 |
+
"Octagon": "glasses/octagon.jpg",
|
25 |
+
"Cat Eye": "glasses/cat eye.jpg",
|
26 |
+
"Pilot (Aviator)": "glasses/aviator.jpg"
|
27 |
+
}
|
28 |
+
|
29 |
+
# Ensure the 'glasses' directory exists and contains the images
|
30 |
+
if not os.path.exists("glasses"):
|
31 |
+
os.makedirs("glasses")
|
32 |
+
# Create dummy image files if they don't exist
|
33 |
+
for _, path in glasses_images.items():
|
34 |
+
if not os.path.exists(path):
|
35 |
+
dummy_image = Image.new('RGB', (200, 100), color='gray')
|
36 |
+
dummy_image.save(path)
|
37 |
+
|
38 |
+
id2label = {0: 'Heart', 1: 'Oblong', 2: 'Oval', 3: 'Round', 4: 'Square'}
|
39 |
+
label2id = {v: k for k, v in id2label.items()}
|
40 |
+
|
41 |
+
# Load model
|
42 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
+
model_checkpoint = "microsoft/swin-tiny-patch4-window7-224"
|
44 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint)
|
45 |
+
|
46 |
+
model = SwinForImageClassification.from_pretrained(
|
47 |
+
model_checkpoint,
|
48 |
+
label2id=label2id,
|
49 |
+
id2label=id2label,
|
50 |
+
ignore_mismatched_sizes=True
|
51 |
+
)
|
52 |
+
|
53 |
+
# Load your trained weights
|
54 |
+
# Ensure 'LR-0001-adamW-32-64swin.pth' is in the same directory or provide the correct path
|
55 |
+
if os.path.exists('LR-0001-adamW-32-64swin.pth'):
|
56 |
+
state_dict = torch.load('LR-0001-adamW-32-64swin.pth', map_location=device)
|
57 |
+
model.load_state_dict(state_dict, strict=False)
|
58 |
+
model.to(device)
|
59 |
+
model.eval()
|
60 |
+
else:
|
61 |
+
print("Warning: Trained weights file 'LR-0001-adamW-32-64swin.pth' not found. Using pre-trained weights only.")
|
62 |
+
|
63 |
+
# Initialize Mediapipe
|
64 |
+
mp_face_detection = mp.solutions.face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5)
|
65 |
+
|
66 |
+
# --- New: Decision tree function
|
67 |
+
def recommend_glasses_tree(face_shape):
|
68 |
+
face_shape = face_shape.lower()
|
69 |
+
if face_shape == "square":
|
70 |
+
return ["Oval", "Round"]
|
71 |
+
elif face_shape == "round":
|
72 |
+
return ["Square", "Octagon", "Cat Eye"]
|
73 |
+
elif face_shape == "oval":
|
74 |
+
return ["Oval", "Pilot (Aviator)", "Cat Eye", "Round"]
|
75 |
+
elif face_shape == "heart":
|
76 |
+
return ["Pilot (Aviator)", "Cat Eye", "Round"]
|
77 |
+
elif face_shape == "oblong":
|
78 |
+
return ["Square", "Oval", "Pilot (Aviator)", "Cat Eye"]
|
79 |
+
else:
|
80 |
+
return []
|
81 |
+
|
82 |
+
# Preprocess function
|
83 |
+
def preprocess_image(image):
|
84 |
+
img = np.array(image, dtype=np.uint8)
|
85 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
86 |
+
|
87 |
+
results = mp_face_detection.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
88 |
+
|
89 |
+
if results.detections:
|
90 |
+
detection = results.detections[0]
|
91 |
+
bbox = detection.location_data.relative_bounding_box
|
92 |
+
h, w, _ = img.shape
|
93 |
+
x1 = int(bbox.xmin * w)
|
94 |
+
y1 = int(bbox.ymin * h)
|
95 |
+
x2 = int((bbox.xmin + bbox.width) * w)
|
96 |
+
y2 = int((bbox.ymin + bbox.height) * h)
|
97 |
+
|
98 |
+
img = img[y1:y2, x1:x2]
|
99 |
+
else:
|
100 |
+
raise ValueError("Wajah tidak terdeteksi.")
|
101 |
+
|
102 |
+
img = cv2.resize(img, (224, 224))
|
103 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
104 |
+
inputs = feature_extractor(images=img, return_tensors="pt")
|
105 |
+
return inputs['pixel_values'].squeeze(0)
|
106 |
+
|
107 |
+
# Prediction function
|
108 |
+
def predict(image):
|
109 |
+
try:
|
110 |
+
inputs = preprocess_image(image).unsqueeze(0).to(device)
|
111 |
+
with torch.no_grad():
|
112 |
+
outputs = model(inputs)
|
113 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
114 |
+
pred_idx = torch.argmax(probs, dim=1).item()
|
115 |
+
pred_label = id2label[pred_idx]
|
116 |
+
pred_prob = probs[0][pred_idx].item() * 100
|
117 |
+
|
118 |
+
# --- Use decision tree for recommendations
|
119 |
+
frame_recommendations = recommend_glasses_tree(pred_label)
|
120 |
+
|
121 |
+
description = face_shape_descriptions.get(pred_label, "tidak dikenali")
|
122 |
+
gallery_items = []
|
123 |
+
|
124 |
+
# Load images for all recommended frames
|
125 |
+
for frame in frame_recommendations:
|
126 |
+
frame_image_path = glasses_images.get(frame)
|
127 |
+
if frame_image_path and os.path.exists(frame_image_path):
|
128 |
+
try:
|
129 |
+
frame_image = Image.open(frame_image_path)
|
130 |
+
gallery_items.append((frame_image, frame)) # Tambahkan nama frame
|
131 |
+
except Exception as e:
|
132 |
+
print(f"Error loading image for {frame}: {e}")
|
133 |
+
|
134 |
+
# Build explanation text
|
135 |
+
if frame_recommendations:
|
136 |
+
recommended_frames_text = ', '.join(frame_recommendations)
|
137 |
+
explanation = (f"Bentuk wajah kamu adalah {pred_label} ({pred_prob:.2f}%). "
|
138 |
+
f"Kamu memiliki bentuk wajah {description} "
|
139 |
+
f"Rekomendasi bentuk kacamata yang sesuai dengan wajah kamu adalah: {recommended_frames_text}.")
|
140 |
+
else:
|
141 |
+
explanation = (f"Bentuk wajah kamu adalah {pred_label} ({pred_prob:.2f}%). "
|
142 |
+
f"Tidak ada rekomendasi frame untuk bentuk wajah ini.")
|
143 |
+
|
144 |
+
return pred_label, explanation, gallery_items
|
145 |
+
|
146 |
+
except ValueError as ve:
|
147 |
+
return "Error", str(ve), []
|
148 |
+
except Exception as e:
|
149 |
+
return "Error", f"Terjadi kesalahan: {str(e)}", []
|
150 |
+
|
151 |
# Gradio Interface
|
152 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
153 |
gr.Markdown("# Program Rekomendasi Kacamata Berdasarkan Bentuk Wajah")
|
|
|
155 |
|
156 |
with gr.Row():
|
157 |
with gr.Column():
|
158 |
+
image_input = gr.Image(type="pil")
|
|
|
159 |
confirm_button = gr.Button("Konfirmasi")
|
160 |
restart_button = gr.Button("Restart")
|
161 |
with gr.Column():
|
|
|
163 |
explanation_output = gr.Textbox(label="Penjelasan")
|
164 |
recommendation_gallery = gr.Gallery(label="Rekomendasi Kacamata", columns=3, show_label=False)
|
165 |
|
|
|
|
|
166 |
confirm_button.click(predict, inputs=image_input, outputs=[detected_shape, explanation_output, recommendation_gallery])
|
167 |
restart_button.click(lambda: (None, "", [], []), inputs=None, outputs=[image_input, detected_shape, explanation_output, recommendation_gallery])
|
168 |
|