Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import mediapipe as mp
|
5 |
+
from transformers import SwinForImageClassification, AutoFeatureExtractor
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Initialize face detection
|
10 |
+
mp_face_detection = mp.solutions.face_detection.FaceDetection(
|
11 |
+
model_selection=1, min_detection_confidence=0.5)
|
12 |
+
|
13 |
+
# Initialize model and labels
|
14 |
+
@st.cache_resource
|
15 |
+
def load_model():
|
16 |
+
id2label = {0: 'Heart', 1: 'Oblong', 2: 'Oval', 3: 'Round', 4: 'Square'}
|
17 |
+
label2id = {v: k for k, v in id2label.items()}
|
18 |
+
|
19 |
+
model = SwinForImageClassification.from_pretrained(
|
20 |
+
"microsoft/swin-tiny-patch4-window7-224",
|
21 |
+
label2id=label2id,
|
22 |
+
id2label=id2label,
|
23 |
+
ignore_mismatched_sizes=True
|
24 |
+
)
|
25 |
+
|
26 |
+
model.load_state_dict(torch.load('swin.pth', map_location='cpu'))
|
27 |
+
model.eval()
|
28 |
+
return model, AutoFeatureExtractor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
|
29 |
+
|
30 |
+
model, feature_extractor = load_model()
|
31 |
+
|
32 |
+
glasses_recommendations = {
|
33 |
+
"Heart": "Rimless (tanpa bingkai bawah)",
|
34 |
+
"Oblong": "Kotak",
|
35 |
+
"Oval": "Berbagai bentuk bingkai",
|
36 |
+
"Round": "Kotak",
|
37 |
+
"Square": "Oval atau bundar"
|
38 |
+
}
|
39 |
+
|
40 |
+
def preprocess_image(image):
|
41 |
+
results = mp_face_detection.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
42 |
+
|
43 |
+
if results.detections:
|
44 |
+
detection = results.detections[0]
|
45 |
+
bbox = detection.location_data.relative_bounding_box
|
46 |
+
h, w, _ = image.shape
|
47 |
+
x1 = int(bbox.xmin * w)
|
48 |
+
y1 = int(bbox.ymin * h)
|
49 |
+
x2 = int((bbox.xmin + bbox.width) * w)
|
50 |
+
y2 = int((bbox.ymin + bbox.height) * h)
|
51 |
+
image = image[y1:y2, x1:x2]
|
52 |
+
else:
|
53 |
+
raise ValueError("No face detected")
|
54 |
+
|
55 |
+
image = cv2.resize(image, (224, 224))
|
56 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
57 |
+
return feature_extractor(images=image, return_tensors="pt")['pixel_values']
|
58 |
+
|
59 |
+
def predict(image):
|
60 |
+
image_tensor = preprocess_image(image)
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = model(image_tensor)
|
63 |
+
return id2label[torch.argmax(outputs.logits).item()]
|
64 |
+
|
65 |
+
# Streamlit UI
|
66 |
+
st.title("Face Shape & Glasses Recommender")
|
67 |
+
st.write("Upload a face photo for shape analysis and glasses recommendations")
|
68 |
+
|
69 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
70 |
+
|
71 |
+
if uploaded_file is not None:
|
72 |
+
image = Image.open(uploaded_file).convert('RGB')
|
73 |
+
img_array = np.array(image)
|
74 |
+
|
75 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
76 |
+
|
77 |
+
try:
|
78 |
+
with st.spinner('Analyzing...'):
|
79 |
+
prediction = predict(cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
|
80 |
+
recommendation = glasses_recommendations[prediction]
|
81 |
+
|
82 |
+
st.success(f"Predicted Face Shape: **{prediction}**")
|
83 |
+
st.info(f"Recommended Glasses Frame: **{recommendation}**")
|
84 |
+
except Exception as e:
|
85 |
+
st.error(f"Error: {str(e)}")
|