from transformers import CLIPProcessor, CLIPModel from PIL import Image model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") def is_safe_image( model, processor, image, ): # Load image # image = Image.open( # r"F:\om\2025\fastsdcpumcp\fastsdcpu\results\829a2123-92c8-4957-ad2f-06365a19665a-1.png" # ) categories = ["safe", "nsfw"] inputs = processor( text=categories, images=image, return_tensors="pt", padding=True, ) outputs = model(**inputs) logits_per_image = outputs.logits_per_image probs = logits_per_image.softmax(dim=1) safe_prob = dict(zip(categories, probs[0].tolist())) print(safe_prob) return safe_prob["safe"] > safe_prob["nsfw"]