Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import PyPDF2 | |
import docx | |
import io | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def extract_text_from_pdf(pdf_file): | |
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file)) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() + "\n" | |
return text | |
def extract_text_from_docx(docx_file): | |
doc = docx.Document(io.BytesIO(docx_file)) | |
return "\n".join([para.text for para in doc.paragraphs]) | |
def parse_cv(file): | |
if file is None: | |
return "Please upload a CV file." | |
file_ext = file.name.split(".")[-1].lower() | |
file_bytes = file.read() | |
if file_ext == "pdf": | |
text = extract_text_from_pdf(file_bytes) | |
elif file_ext == "docx": | |
text = extract_text_from_docx(file_bytes) | |
else: | |
return "Unsupported file format. Please upload a PDF or DOCX file." | |
prompt = f"Analyze the following CV and generate a professional summary and improvement suggestions:\n\n{text}" | |
response = client.text_generation(prompt, max_tokens=512) | |
return response | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("## AI-powered CV Analyzer and Chatbot") | |
with gr.Tab("Chatbot"): | |
chat_interface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
with gr.Tab("CV Analyzer"): | |
gr.Markdown("### Upload your CV (PDF or DOCX) to receive a professional analysis.") | |
file_input = gr.File(label="Upload CV", type="file") | |
output_text = gr.Textbox(label="CV Analysis Report", lines=10) | |
analyze_button = gr.Button("Analyze CV") | |
analyze_button.click(parse_cv, inputs=file_input, outputs=output_text) | |
if __name__ == "__main__": | |
demo.launch() | |