Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ from docx import Document
|
|
7 |
# Initialize the inference client from Hugging Face.
|
8 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
|
10 |
-
|
11 |
def extract_text_from_pdf(pdf_file_bytes):
|
12 |
"""Extract text from PDF bytes."""
|
13 |
try:
|
@@ -21,7 +20,6 @@ def extract_text_from_pdf(pdf_file_bytes):
|
|
21 |
except Exception as e:
|
22 |
return f"Error reading PDF: {e}"
|
23 |
|
24 |
-
|
25 |
def extract_text_from_docx(docx_file_bytes):
|
26 |
"""Extract text from DOCX bytes."""
|
27 |
try:
|
@@ -31,58 +29,49 @@ def extract_text_from_docx(docx_file_bytes):
|
|
31 |
except Exception as e:
|
32 |
return f"Error reading DOCX: {e}"
|
33 |
|
34 |
-
|
35 |
def parse_cv(file, job_description):
|
36 |
-
"""Analyze the CV
|
37 |
if file is None:
|
38 |
-
return "Please upload a CV file."
|
39 |
-
|
40 |
-
# Correctly handle the file object when type="binary"
|
41 |
try:
|
42 |
file_bytes = file
|
43 |
-
file_ext = "pdf"
|
44 |
-
if file_bytes:
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
else:
|
51 |
-
return "Unsupported file format. Cannot determine type from content"
|
52 |
except Exception as e:
|
53 |
-
|
|
|
54 |
|
|
|
55 |
if file_ext == "pdf":
|
56 |
-
|
57 |
elif file_ext == "docx":
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
return text # Return extraction error if any.
|
64 |
-
|
65 |
-
# Print the extracted CV text
|
66 |
-
print("Extracted CV text (before sending to LLM):\n", text)
|
67 |
|
|
|
68 |
prompt = (
|
69 |
-
f"Analyze the
|
70 |
-
f"Provide a summary, an assessment of fit, and a score from 0 to 10.\n\n"
|
71 |
f"Job Description:\n{job_description}\n\n"
|
72 |
-
f"Candidate CV:\n{
|
73 |
)
|
74 |
|
75 |
try:
|
76 |
-
|
77 |
-
|
78 |
except Exception as e:
|
79 |
-
return f"Error
|
80 |
-
|
81 |
-
return response
|
82 |
-
|
83 |
|
84 |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
85 |
-
"""Generate
|
86 |
messages = [{"role": "system", "content": system_message}]
|
87 |
for user_msg, bot_msg in history:
|
88 |
if user_msg:
|
@@ -93,11 +82,9 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens,
|
|
93 |
|
94 |
response = ""
|
95 |
try:
|
96 |
-
# Stream response tokens from the chat completion endpoint.
|
97 |
-
# Replace 'max_tokens' with 'max_new_tokens'
|
98 |
for message_chunk in client.chat_completion(
|
99 |
messages,
|
100 |
-
|
101 |
stream=True,
|
102 |
temperature=temperature,
|
103 |
top_p=top_p,
|
@@ -108,14 +95,12 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens,
|
|
108 |
except Exception as e:
|
109 |
yield f"Error during chat generation: {e}"
|
110 |
|
111 |
-
|
112 |
-
# Build the Gradio interface
|
113 |
demo = gr.Blocks()
|
114 |
with demo:
|
115 |
gr.Markdown("## AI-powered CV Analyzer and Chatbot")
|
116 |
|
117 |
with gr.Tab("Chatbot"):
|
118 |
-
# Set type="messages" for both the chat interface and the chatbot.
|
119 |
chat_interface = gr.ChatInterface(
|
120 |
respond,
|
121 |
chatbot=gr.Chatbot(value=[], label="Chatbot", type="messages"),
|
@@ -129,16 +114,18 @@ with demo:
|
|
129 |
)
|
130 |
|
131 |
with gr.Tab("CV Analyzer"):
|
132 |
-
gr.Markdown(
|
133 |
-
"### Upload your CV (PDF or DOCX) and provide the job description to receive a professional analysis and suitability score."
|
134 |
-
)
|
135 |
-
# Use type="binary" for the file component.
|
136 |
file_input = gr.File(label="Upload CV", type="binary")
|
137 |
job_desc_input = gr.Textbox(label="Job Description", lines=5)
|
138 |
-
|
|
|
139 |
analyze_button = gr.Button("Analyze CV")
|
140 |
|
141 |
-
analyze_button.click(
|
|
|
|
|
|
|
|
|
142 |
|
143 |
if __name__ == "__main__":
|
144 |
-
demo.queue().launch()
|
|
|
7 |
# Initialize the inference client from Hugging Face.
|
8 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
|
|
|
10 |
def extract_text_from_pdf(pdf_file_bytes):
|
11 |
"""Extract text from PDF bytes."""
|
12 |
try:
|
|
|
20 |
except Exception as e:
|
21 |
return f"Error reading PDF: {e}"
|
22 |
|
|
|
23 |
def extract_text_from_docx(docx_file_bytes):
|
24 |
"""Extract text from DOCX bytes."""
|
25 |
try:
|
|
|
29 |
except Exception as e:
|
30 |
return f"Error reading DOCX: {e}"
|
31 |
|
|
|
32 |
def parse_cv(file, job_description):
|
33 |
+
"""Analyze the CV and return both extracted text and analysis report."""
|
34 |
if file is None:
|
35 |
+
return "Please upload a CV file.", ""
|
36 |
+
|
|
|
37 |
try:
|
38 |
file_bytes = file
|
39 |
+
file_ext = "pdf"
|
40 |
+
if file_bytes.startswith(b'%PDF'):
|
41 |
+
file_ext = "pdf"
|
42 |
+
elif file_bytes.startswith(b'PK\x03\x04'):
|
43 |
+
file_ext = "docx"
|
44 |
+
else:
|
45 |
+
return "Unsupported file format.", "Cannot determine file type from content"
|
|
|
|
|
46 |
except Exception as e:
|
47 |
+
error_msg = f"Error reading file: {e}"
|
48 |
+
return error_msg, error_msg
|
49 |
|
50 |
+
# Extract text
|
51 |
if file_ext == "pdf":
|
52 |
+
extracted_text = extract_text_from_pdf(file_bytes)
|
53 |
elif file_ext == "docx":
|
54 |
+
extracted_text = extract_text_from_docx(file_bytes)
|
55 |
+
|
56 |
+
# Check for extraction errors
|
57 |
+
if extracted_text.startswith("Error"):
|
58 |
+
return extracted_text, "Error during text extraction. Please check the file."
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
# Prepare and send to LLM
|
61 |
prompt = (
|
62 |
+
f"Analyze the CV against the job description. Provide a summary, assessment, and score 0-10.\n\n"
|
|
|
63 |
f"Job Description:\n{job_description}\n\n"
|
64 |
+
f"Candidate CV:\n{extracted_text}"
|
65 |
)
|
66 |
|
67 |
try:
|
68 |
+
analysis = client.text_generation(prompt, max_new_tokens=512)
|
69 |
+
return extracted_text, analysis
|
70 |
except Exception as e:
|
71 |
+
return extracted_text, f"Analysis Error: {e}"
|
|
|
|
|
|
|
72 |
|
73 |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
74 |
+
"""Generate chatbot response."""
|
75 |
messages = [{"role": "system", "content": system_message}]
|
76 |
for user_msg, bot_msg in history:
|
77 |
if user_msg:
|
|
|
82 |
|
83 |
response = ""
|
84 |
try:
|
|
|
|
|
85 |
for message_chunk in client.chat_completion(
|
86 |
messages,
|
87 |
+
max_tokens=max_tokens,
|
88 |
stream=True,
|
89 |
temperature=temperature,
|
90 |
top_p=top_p,
|
|
|
95 |
except Exception as e:
|
96 |
yield f"Error during chat generation: {e}"
|
97 |
|
98 |
+
# Gradio Interface
|
|
|
99 |
demo = gr.Blocks()
|
100 |
with demo:
|
101 |
gr.Markdown("## AI-powered CV Analyzer and Chatbot")
|
102 |
|
103 |
with gr.Tab("Chatbot"):
|
|
|
104 |
chat_interface = gr.ChatInterface(
|
105 |
respond,
|
106 |
chatbot=gr.Chatbot(value=[], label="Chatbot", type="messages"),
|
|
|
114 |
)
|
115 |
|
116 |
with gr.Tab("CV Analyzer"):
|
117 |
+
gr.Markdown("### Upload your CV and provide the job description")
|
|
|
|
|
|
|
118 |
file_input = gr.File(label="Upload CV", type="binary")
|
119 |
job_desc_input = gr.Textbox(label="Job Description", lines=5)
|
120 |
+
extracted_text = gr.Textbox(label="Extracted CV Content", lines=10, interactive=False)
|
121 |
+
analysis_output = gr.Textbox(label="Analysis Report", lines=10)
|
122 |
analyze_button = gr.Button("Analyze CV")
|
123 |
|
124 |
+
analyze_button.click(
|
125 |
+
parse_cv,
|
126 |
+
inputs=[file_input, job_desc_input],
|
127 |
+
outputs=[extracted_text, analysis_output]
|
128 |
+
)
|
129 |
|
130 |
if __name__ == "__main__":
|
131 |
+
demo.queue().launch()
|