Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,32 +4,44 @@ import PyPDF2
|
|
| 4 |
import io
|
| 5 |
from docx import Document
|
| 6 |
import os
|
| 7 |
-
import fitz # PyMuPDF for better PDF handling
|
| 8 |
|
| 9 |
# For PDF generation
|
| 10 |
from reportlab.pdfgen import canvas
|
| 11 |
from reportlab.lib.pagesizes import letter
|
|
|
|
| 12 |
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
| 13 |
from reportlab.lib.styles import getSampleStyleSheet
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
# Function to extract text from PDF
|
| 22 |
|
| 23 |
def extract_text_from_pdf(pdf_file):
|
|
|
|
| 24 |
try:
|
| 25 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 26 |
-
text = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
return text.strip() or "No text could be extracted from the PDF."
|
| 28 |
except Exception as e:
|
| 29 |
return f"Error reading PDF: {e}"
|
| 30 |
|
| 31 |
-
|
| 32 |
def extract_text_from_docx(docx_file):
|
|
|
|
| 33 |
try:
|
| 34 |
doc = Document(docx_file)
|
| 35 |
text = "\n".join(para.text for para in doc.paragraphs)
|
|
@@ -37,13 +49,14 @@ def extract_text_from_docx(docx_file):
|
|
| 37 |
except Exception as e:
|
| 38 |
return f"Error reading DOCX: {e}"
|
| 39 |
|
| 40 |
-
|
| 41 |
def parse_cv(file, job_description):
|
|
|
|
| 42 |
if file is None:
|
| 43 |
return "Please upload a CV file.", ""
|
| 44 |
|
| 45 |
try:
|
| 46 |
-
file_path = file.name
|
| 47 |
file_ext = os.path.splitext(file_path)[1].lower()
|
| 48 |
|
| 49 |
if file_ext == ".pdf":
|
|
@@ -51,13 +64,20 @@ def parse_cv(file, job_description):
|
|
| 51 |
elif file_ext == ".docx":
|
| 52 |
extracted_text = extract_text_from_docx(file_path)
|
| 53 |
else:
|
| 54 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
except Exception as e:
|
| 56 |
-
|
|
|
|
| 57 |
|
|
|
|
| 58 |
if extracted_text.startswith("Error"):
|
| 59 |
return extracted_text, "Error during text extraction. Please check the file."
|
| 60 |
|
|
|
|
| 61 |
prompt = (
|
| 62 |
f"Analyze the CV against the job description. Provide a summary, assessment, "
|
| 63 |
f"and a score 0-10.\n\n"
|
|
@@ -65,100 +85,201 @@ def parse_cv(file, job_description):
|
|
| 65 |
f"Candidate CV:\n{extracted_text}\n"
|
| 66 |
)
|
| 67 |
|
|
|
|
| 68 |
try:
|
| 69 |
analysis = client.text_generation(prompt, max_new_tokens=512)
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
except Exception as e:
|
| 72 |
return extracted_text, f"Analysis Error: {e}"
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
def optimize_resume(resume_text, job_title):
|
| 76 |
prompt = f"Optimize the following resume for the job title '{job_title}':\n\n{resume_text}"
|
| 77 |
responses = []
|
| 78 |
try:
|
| 79 |
-
for message in client.
|
| 80 |
-
|
| 81 |
-
|
| 82 |
stream=True,
|
| 83 |
):
|
| 84 |
-
responses.append(message
|
| 85 |
except Exception as e:
|
| 86 |
return f"Error during model inference: {e}"
|
| 87 |
|
| 88 |
return ''.join(responses)
|
| 89 |
|
| 90 |
-
# Function to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
def process_resume(file, job_title):
|
| 92 |
try:
|
| 93 |
file_name = file.name
|
| 94 |
if file_name.endswith(".pdf"):
|
| 95 |
-
|
|
|
|
| 96 |
elif file_name.endswith(".docx"):
|
|
|
|
| 97 |
resume_text = extract_text_from_docx(file.name)
|
| 98 |
else:
|
| 99 |
-
|
|
|
|
|
|
|
| 100 |
|
|
|
|
| 101 |
optimized_resume = optimize_resume(resume_text, job_title)
|
|
|
|
| 102 |
return optimized_resume
|
| 103 |
except Exception as e:
|
| 104 |
return f"Error processing resume: {e}"
|
| 105 |
|
| 106 |
-
# Function to generate a PDF report
|
| 107 |
-
def create_pdf_report(report_text):
|
| 108 |
-
buffer = io.BytesIO()
|
| 109 |
-
doc = SimpleDocTemplate(buffer, pagesize=letter)
|
| 110 |
-
styles = getSampleStyleSheet()
|
| 111 |
-
Story = [Paragraph("<b>Analysis Report</b>", styles["Title"]), Spacer(1, 12)]
|
| 112 |
-
|
| 113 |
-
for line in report_text.split("\n"):
|
| 114 |
-
Story.append(Paragraph(line, styles["Normal"]))
|
| 115 |
-
Story.append(Spacer(1, 6))
|
| 116 |
-
|
| 117 |
-
doc.build(Story)
|
| 118 |
-
buffer.seek(0)
|
| 119 |
-
return buffer
|
| 120 |
-
|
| 121 |
-
# Function to toggle the download button
|
| 122 |
-
def toggle_download_button(analysis_report):
|
| 123 |
-
return gr.update(interactive=bool(analysis_report.strip()), visible=bool(analysis_report.strip()))
|
| 124 |
-
|
| 125 |
# Build the Gradio UI
|
| 126 |
demo = gr.Blocks()
|
| 127 |
with demo:
|
| 128 |
-
gr.Markdown("## AI-powered CV Analyzer
|
| 129 |
|
| 130 |
with gr.Tab("Chatbot"):
|
| 131 |
chat_interface = gr.ChatInterface(
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
max_tokens=512,
|
| 135 |
-
),
|
| 136 |
-
chatbot=gr.Chatbot(label="Chatbot"),
|
| 137 |
textbox=gr.Textbox(placeholder="Enter your message here...", label="Message"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
)
|
| 139 |
|
| 140 |
with gr.Tab("CV Analyzer"):
|
| 141 |
gr.Markdown("### Upload your CV and provide the job description")
|
| 142 |
file_input = gr.File(label="Upload CV", file_types=[".pdf", ".docx"])
|
| 143 |
job_desc_input = gr.Textbox(label="Job Description", lines=5)
|
| 144 |
-
extracted_text = gr.Textbox(
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
pdf_file = gr.File(label="Download PDF", interactive=False)
|
|
|
|
| 148 |
analyze_button = gr.Button("Analyze CV")
|
| 149 |
-
|
| 150 |
-
analyze_button.click(parse_cv, [file_input, job_desc_input], [extracted_text, analysis_output])
|
| 151 |
-
analyze_button.then(toggle_download_button, [analysis_output], [download_pdf_button])
|
| 152 |
-
download_pdf_button.click(create_pdf_report, [analysis_output], [pdf_file])
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
with gr.Tab("CV Optimizer"):
|
| 155 |
-
gr.Markdown("### Upload your
|
| 156 |
-
|
| 157 |
-
job_title_input = gr.Textbox(label="Job Title",
|
| 158 |
optimized_resume_output = gr.Textbox(label="Optimized Resume", lines=20)
|
| 159 |
-
optimize_button = gr.Button("Optimize
|
| 160 |
-
|
| 161 |
-
optimize_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
if __name__ == "__main__":
|
| 164 |
demo.queue().launch()
|
|
|
|
| 4 |
import io
|
| 5 |
from docx import Document
|
| 6 |
import os
|
|
|
|
| 7 |
|
| 8 |
# For PDF generation
|
| 9 |
from reportlab.pdfgen import canvas
|
| 10 |
from reportlab.lib.pagesizes import letter
|
| 11 |
+
from reportlab.lib import utils
|
| 12 |
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
| 13 |
from reportlab.lib.styles import getSampleStyleSheet
|
| 14 |
|
| 15 |
+
# Import for CV Optimizer
|
| 16 |
+
import fitz # PyMuPDF for PDF handling
|
| 17 |
+
|
| 18 |
+
# Initialize the inference client from Hugging Face.
|
| 19 |
+
# Updated model to Meta-Llama-3.1-8B-Instruct
|
| 20 |
+
try:
|
| 21 |
+
client = InferenceClient(
|
| 22 |
+
model="meta-llama/Meta-Llama-3-8B-Instruct",
|
| 23 |
+
token=os.getenv("HF_TOKEN")
|
| 24 |
+
)
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Error initializing InferenceClient: {e}")
|
| 27 |
|
|
|
|
| 28 |
|
| 29 |
def extract_text_from_pdf(pdf_file):
|
| 30 |
+
"""Extract text from PDF file."""
|
| 31 |
try:
|
| 32 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 33 |
+
text = ""
|
| 34 |
+
for page in pdf_reader.pages:
|
| 35 |
+
page_text = page.extract_text()
|
| 36 |
+
if page_text:
|
| 37 |
+
text += page_text + "\n"
|
| 38 |
return text.strip() or "No text could be extracted from the PDF."
|
| 39 |
except Exception as e:
|
| 40 |
return f"Error reading PDF: {e}"
|
| 41 |
|
| 42 |
+
|
| 43 |
def extract_text_from_docx(docx_file):
|
| 44 |
+
"""Extract text from DOCX file."""
|
| 45 |
try:
|
| 46 |
doc = Document(docx_file)
|
| 47 |
text = "\n".join(para.text for para in doc.paragraphs)
|
|
|
|
| 49 |
except Exception as e:
|
| 50 |
return f"Error reading DOCX: {e}"
|
| 51 |
|
| 52 |
+
|
| 53 |
def parse_cv(file, job_description):
|
| 54 |
+
"""Analyze the CV, show the prompt (debug) and return LLM analysis."""
|
| 55 |
if file is None:
|
| 56 |
return "Please upload a CV file.", ""
|
| 57 |
|
| 58 |
try:
|
| 59 |
+
file_path = file.name # Get the file path
|
| 60 |
file_ext = os.path.splitext(file_path)[1].lower()
|
| 61 |
|
| 62 |
if file_ext == ".pdf":
|
|
|
|
| 64 |
elif file_ext == ".docx":
|
| 65 |
extracted_text = extract_text_from_docx(file_path)
|
| 66 |
else:
|
| 67 |
+
return (
|
| 68 |
+
"Unsupported file format. Please upload a PDF or DOCX file.",
|
| 69 |
+
"Unsupported file format.",
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
except Exception as e:
|
| 73 |
+
error_msg = f"Error reading file: {e}"
|
| 74 |
+
return error_msg, error_msg
|
| 75 |
|
| 76 |
+
# Check for extraction errors
|
| 77 |
if extracted_text.startswith("Error"):
|
| 78 |
return extracted_text, "Error during text extraction. Please check the file."
|
| 79 |
|
| 80 |
+
# Prepare debug prompt
|
| 81 |
prompt = (
|
| 82 |
f"Analyze the CV against the job description. Provide a summary, assessment, "
|
| 83 |
f"and a score 0-10.\n\n"
|
|
|
|
| 85 |
f"Candidate CV:\n{extracted_text}\n"
|
| 86 |
)
|
| 87 |
|
| 88 |
+
# Call LLM
|
| 89 |
try:
|
| 90 |
analysis = client.text_generation(prompt, max_new_tokens=512)
|
| 91 |
+
# Show both the debug prompt and the LLM analysis in the "Analysis Report"
|
| 92 |
+
analysis_report = (
|
| 93 |
+
f"--- DEBUG PROMPT ---\n{prompt}\n"
|
| 94 |
+
f"--- LLM ANALYSIS ---\n{analysis}"
|
| 95 |
+
)
|
| 96 |
+
return extracted_text, analysis_report
|
| 97 |
except Exception as e:
|
| 98 |
return extracted_text, f"Analysis Error: {e}"
|
| 99 |
|
| 100 |
+
|
| 101 |
+
def respond(
|
| 102 |
+
message,
|
| 103 |
+
history: list[tuple[str, str]],
|
| 104 |
+
system_message,
|
| 105 |
+
max_tokens,
|
| 106 |
+
temperature,
|
| 107 |
+
top_p,
|
| 108 |
+
):
|
| 109 |
+
"""Generate chatbot response."""
|
| 110 |
+
messages = [{"role": "system", "content": system_message}]
|
| 111 |
+
for user_msg, bot_msg in history:
|
| 112 |
+
if user_msg:
|
| 113 |
+
messages.append({"role": "user", "content": user_msg})
|
| 114 |
+
if bot_msg:
|
| 115 |
+
messages.append({"role": "assistant", "content": bot_msg})
|
| 116 |
+
messages.append({"role": "user", "content": message})
|
| 117 |
+
|
| 118 |
+
response = ""
|
| 119 |
+
try:
|
| 120 |
+
for message_chunk in client.text_generation(
|
| 121 |
+
messages,
|
| 122 |
+
max_new_tokens=max_tokens,
|
| 123 |
+
stream=True,
|
| 124 |
+
temperature=temperature,
|
| 125 |
+
top_p=top_p,
|
| 126 |
+
):
|
| 127 |
+
response += message_chunk
|
| 128 |
+
yield response
|
| 129 |
+
except Exception as e:
|
| 130 |
+
yield f"Error during chat generation: {e}"
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def create_pdf_report(report_text):
|
| 134 |
+
"""Creates a PDF report using SimpleDocTemplate for better formatting."""
|
| 135 |
+
if not report_text.strip():
|
| 136 |
+
report_text = "No analysis report to convert."
|
| 137 |
+
|
| 138 |
+
buffer = io.BytesIO()
|
| 139 |
+
doc = SimpleDocTemplate(buffer, pagesize=letter)
|
| 140 |
+
styles = getSampleStyleSheet()
|
| 141 |
+
Story = []
|
| 142 |
+
|
| 143 |
+
# Title
|
| 144 |
+
Story.append(Paragraph("<b>Analysis Report</b>", styles["Title"]))
|
| 145 |
+
Story.append(Spacer(1, 12))
|
| 146 |
+
|
| 147 |
+
# Report Content
|
| 148 |
+
for line in report_text.split("\n"):
|
| 149 |
+
Story.append(Paragraph(line, styles["Normal"]))
|
| 150 |
+
Story.append(Spacer(1, 6)) # Add a small space between lines
|
| 151 |
+
|
| 152 |
+
doc.build(Story)
|
| 153 |
+
buffer.seek(0)
|
| 154 |
+
return buffer
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def toggle_download_button(analysis_report):
|
| 158 |
+
"""Toggle the download button."""
|
| 159 |
+
return gr.update(
|
| 160 |
+
interactive=bool(analysis_report.strip()),
|
| 161 |
+
visible=bool(analysis_report.strip()),
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
# Function to optimize resume based on job title
|
| 165 |
def optimize_resume(resume_text, job_title):
|
| 166 |
prompt = f"Optimize the following resume for the job title '{job_title}':\n\n{resume_text}"
|
| 167 |
responses = []
|
| 168 |
try:
|
| 169 |
+
for message in client.text_generation(
|
| 170 |
+
prompt,
|
| 171 |
+
max_new_tokens=1000,
|
| 172 |
stream=True,
|
| 173 |
):
|
| 174 |
+
responses.append(message)
|
| 175 |
except Exception as e:
|
| 176 |
return f"Error during model inference: {e}"
|
| 177 |
|
| 178 |
return ''.join(responses)
|
| 179 |
|
| 180 |
+
# Function to extract text from a PDF file (using PyMuPDF)
|
| 181 |
+
def extract_text_from_pdf_fitz(pdf_file_path):
|
| 182 |
+
text = ""
|
| 183 |
+
try:
|
| 184 |
+
pdf_document = fitz.open(pdf_file_path)
|
| 185 |
+
for page_num in range(len(pdf_document)):
|
| 186 |
+
page = pdf_document.load_page(page_num)
|
| 187 |
+
text += page.get_text()
|
| 188 |
+
except Exception as e:
|
| 189 |
+
return f"Error extracting text from PDF: {e}"
|
| 190 |
+
return text
|
| 191 |
+
|
| 192 |
+
# Function to process the resume and job title inputs for optimization
|
| 193 |
def process_resume(file, job_title):
|
| 194 |
try:
|
| 195 |
file_name = file.name
|
| 196 |
if file_name.endswith(".pdf"):
|
| 197 |
+
# Extract text if the file is a PDF
|
| 198 |
+
resume_text = extract_text_from_pdf_fitz(file.name)
|
| 199 |
elif file_name.endswith(".docx"):
|
| 200 |
+
# Extract text if the file is a Word document
|
| 201 |
resume_text = extract_text_from_docx(file.name)
|
| 202 |
else:
|
| 203 |
+
# Assume the file is a text file and read it directly
|
| 204 |
+
with open(file.name, 'r', encoding='utf-8') as f:
|
| 205 |
+
resume_text = f.read()
|
| 206 |
|
| 207 |
+
# Optimize the resume
|
| 208 |
optimized_resume = optimize_resume(resume_text, job_title)
|
| 209 |
+
|
| 210 |
return optimized_resume
|
| 211 |
except Exception as e:
|
| 212 |
return f"Error processing resume: {e}"
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
# Build the Gradio UI
|
| 215 |
demo = gr.Blocks()
|
| 216 |
with demo:
|
| 217 |
+
gr.Markdown("## AI-powered CV Analyzer and Chatbot")
|
| 218 |
|
| 219 |
with gr.Tab("Chatbot"):
|
| 220 |
chat_interface = gr.ChatInterface(
|
| 221 |
+
respond,
|
| 222 |
+
chatbot=gr.Chatbot(value=[], label="Chatbot"),
|
|
|
|
|
|
|
|
|
|
| 223 |
textbox=gr.Textbox(placeholder="Enter your message here...", label="Message"),
|
| 224 |
+
additional_inputs=[
|
| 225 |
+
gr.Textbox(
|
| 226 |
+
value="You are a friendly Chatbot.", label="System message"
|
| 227 |
+
),
|
| 228 |
+
gr.Slider(
|
| 229 |
+
minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"
|
| 230 |
+
),
|
| 231 |
+
gr.Slider(
|
| 232 |
+
minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"
|
| 233 |
+
),
|
| 234 |
+
gr.Slider(
|
| 235 |
+
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
|
| 236 |
+
),
|
| 237 |
+
],
|
| 238 |
)
|
| 239 |
|
| 240 |
with gr.Tab("CV Analyzer"):
|
| 241 |
gr.Markdown("### Upload your CV and provide the job description")
|
| 242 |
file_input = gr.File(label="Upload CV", file_types=[".pdf", ".docx"])
|
| 243 |
job_desc_input = gr.Textbox(label="Job Description", lines=5)
|
| 244 |
+
extracted_text = gr.Textbox(
|
| 245 |
+
label="Extracted CV Content", lines=10, interactive=False
|
| 246 |
+
)
|
| 247 |
+
analysis_output = gr.Textbox(
|
| 248 |
+
label="Analysis Report", lines=10, interactive=False
|
| 249 |
+
)
|
| 250 |
+
download_pdf_button = gr.Button(
|
| 251 |
+
"Download Analysis as PDF", visible=False, interactive=False
|
| 252 |
+
)
|
| 253 |
pdf_file = gr.File(label="Download PDF", interactive=False)
|
| 254 |
+
|
| 255 |
analyze_button = gr.Button("Analyze CV")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
+
analyze_button.click(
|
| 258 |
+
parse_cv,
|
| 259 |
+
inputs=[file_input, job_desc_input],
|
| 260 |
+
outputs=[extracted_text, analysis_output],
|
| 261 |
+
).then(
|
| 262 |
+
toggle_download_button,
|
| 263 |
+
inputs=[analysis_output],
|
| 264 |
+
outputs=[download_pdf_button],
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
download_pdf_button.click(
|
| 268 |
+
create_pdf_report, inputs=[analysis_output], outputs=[pdf_file]
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
with gr.Tab("CV Optimizer"):
|
| 272 |
+
gr.Markdown("### Upload your CV and enter the job title to optimize your resume")
|
| 273 |
+
cv_file_input = gr.File(label="Upload CV (PDF or DOCX)", file_types=[".pdf", ".docx"])
|
| 274 |
+
job_title_input = gr.Textbox(label="Job Title", placeholder="Enter the job title...")
|
| 275 |
optimized_resume_output = gr.Textbox(label="Optimized Resume", lines=20)
|
| 276 |
+
optimize_button = gr.Button("Optimize CV")
|
| 277 |
+
|
| 278 |
+
optimize_button.click(
|
| 279 |
+
process_resume,
|
| 280 |
+
inputs=[cv_file_input, job_title_input],
|
| 281 |
+
outputs=[optimized_resume_output]
|
| 282 |
+
)
|
| 283 |
|
| 284 |
if __name__ == "__main__":
|
| 285 |
demo.queue().launch()
|