File size: 13,649 Bytes
32bb851
 
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3c737
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3c737
 
 
 
 
 
 
 
 
 
35932eb
9c3c737
 
 
 
 
 
 
 
35932eb
 
9c3c737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3c737
35932eb
 
9c3c737
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3c737
 
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3c737
35932eb
 
9c3c737
35932eb
 
 
9c3c737
 
 
 
 
 
35932eb
 
 
c1f9bb7
 
 
 
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3c737
35932eb
 
 
 
 
 
 
 
9c3c737
35932eb
9c3c737
 
 
35932eb
9c3c737
35932eb
9c3c737
 
35932eb
 
 
 
 
 
 
 
 
9c3c737
35932eb
9c3c737
 
 
35932eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
"""Template Demo for IBM Granite Hugging Face spaces."""

from collections.abc import Iterator
from datetime import datetime
from pathlib import Path
from threading import Thread

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import random

from themes.research_monochrome import theme

# =============================================================================
# Constants & Prompts
# =============================================================================
today_date = datetime.today().strftime("%B %-d, %Y")  # noqa: DTZ002
SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024.
Today's Date: {today_date}.
You are Granite, developed by IBM. You are a helpful AI assistant"""
TITLE = "IBM Granite 3.1 8b Instruct & Vision Preview"
DESCRIPTION = """
<p>Granite 3.1 8b instruct is an open‐source LLM supporting a 128k context window and Granite Vision 3.1 2B Preview for vision‐language capabilities. Start with one of the sample prompts
or enter your own. Keep in mind that AI can occasionally make mistakes.
<span class="gr_docs_link">
<a href="https://www.ibm.com/granite/docs/">View Documentation <i class="fa fa-external-link"></i></a>
</span>
</p>
"""
MAX_INPUT_TOKEN_LENGTH = 128_000
MAX_NEW_TOKENS = 1024
TEMPERATURE = 0.7
TOP_P = 0.85
TOP_K = 50
REPETITION_PENALTY = 1.05

# Vision defaults (advanced settings)
VISION_TEMPERATURE = 0.2
VISION_TOP_P = 0.95
VISION_TOP_K = 50
VISION_MAX_TOKENS = 128

if not torch.cuda.is_available():
    print("This demo may not work on CPU.")

# =============================================================================
# Text Model Loading
# =============================================================================
text_model = AutoModelForCausalLM.from_pretrained(
    "ibm-granite/granite-3.1-8b-instruct",
    torch_dtype=torch.float16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.1-8b-instruct")
tokenizer.use_default_system_prompt = False

# =============================================================================
# Vision Model Loading
# =============================================================================
vision_model_path = "ibm-granite/granite-vision-3.1-2b-preview"
vision_processor = LlavaNextProcessor.from_pretrained(vision_model_path, use_fast=True)
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
    vision_model_path,
    torch_dtype=torch.float16,
    device_map="auto",
    trust_remote_code=True  # Ensure the custom code is used so that weight shapes match.
)

# =============================================================================
# Text Generation Function (for text-only chat)
# =============================================================================
@spaces.GPU
def generate(
    message: str,
    chat_history: list[dict],
    temperature: float = TEMPERATURE,
    repetition_penalty: float = REPETITION_PENALTY,
    top_p: float = TOP_P,
    top_k: float = TOP_K,
    max_new_tokens: int = MAX_NEW_TOKENS,
) -> Iterator[str]:
    """Generate function for text chat demo."""
    conversation = []
    conversation.append({"role": "system", "content": SYS_PROMPT})
    conversation.extend(chat_history)
    conversation.append({"role": "user", "content": message})
    input_ids = tokenizer.apply_chat_template(
        conversation,
        return_tensors="pt",
        add_generation_prompt=True,
        truncation=True,
        max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens,
    )
    input_ids = input_ids.to(text_model.device)
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=text_model.generate, kwargs=generate_kwargs)
    t.start()
    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

# =============================================================================
# Vision Chat Inference Function (for image+text chat)
# =============================================================================
def get_text_from_content(content):
    texts = []
    for item in content:
        if item["type"] == "text":
            texts.append(item["text"])
        elif item["type"] == "image":
            texts.append("[Image]")
    return " ".join(texts)

@spaces.GPU
def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, top_p=VISION_TOP_P, top_k=VISION_TOP_K, max_tokens=VISION_MAX_TOKENS):
    if conversation is None:
        conversation = []
    user_content = []
    if image is not None:
        user_content.append({"type": "image", "image": image})
    if text and text.strip():
        user_content.append({"type": "text", "text": text.strip()})
    if not user_content:
        return display_vision_conversation(conversation), conversation
    conversation.append({"role": "user", "content": user_content})
    inputs = vision_processor.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt"
    ).to("cuda")
    torch.manual_seed(random.randint(0, 10000))
    generation_kwargs = {
        "max_new_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "do_sample": True,
    }
    output = vision_model.generate(**inputs, **generation_kwargs)
    assistant_response = vision_processor.decode(output[0], skip_special_tokens=True)
    conversation.append({"role": "assistant", "content": [{"type": "text", "text": assistant_response.strip()}]})
    return display_vision_conversation(conversation), conversation

# =============================================================================
# Helper Functions to Format Conversation for Display
# =============================================================================
def display_text_conversation(conversation):
    """Convert a text conversation (list of dicts) into a list of (user, assistant) tuples."""
    chat_history = []
    i = 0
    while i < len(conversation):
        if conversation[i]["role"] == "user":
            user_msg = conversation[i]["content"]
            assistant_msg = ""
            if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
                assistant_msg = conversation[i+1]["content"]
                i += 2
            else:
                i += 1
            chat_history.append((user_msg, assistant_msg))
        else:
            i += 1
    return chat_history

def display_vision_conversation(conversation):
    """Convert a vision conversation (with mixed content types) into a list of (user, assistant) tuples."""
    chat_history = []
    i = 0
    while i < len(conversation):
        if conversation[i]["role"] == "user":
            user_msg = get_text_from_content(conversation[i]["content"])
            assistant_msg = ""
            if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
                # Extract assistant text; remove any special tokens if present.
                assistant_msg = conversation[i+1]["content"][0]["text"].split("<|assistant|>")[-1].strip()
                i += 2
            else:
                i += 1
            chat_history.append((user_msg, assistant_msg))
        else:
            i += 1
    return chat_history

# =============================================================================
# Unified Send-Message Function
# =============================================================================
def send_message(image, text,
                 text_temperature, text_repetition_penalty, text_top_p, text_top_k, text_max_new_tokens,
                 vision_temperature, vision_top_p, vision_top_k, vision_max_tokens,
                 text_state, vision_state):
    """
    If an image is uploaded, use the vision model; otherwise, use the text model.
    Returns updated conversation (as a list of tuples) and state for each branch.
    """
    if image is not None:
        # Vision branch
        conv = vision_state if vision_state is not None else []
        chat_history, updated_conv = chat_inference(
            image, text, conv,
            temperature=vision_temperature,
            top_p=vision_top_p,
            top_k=vision_top_k,
            max_tokens=vision_max_tokens
        )
        vision_state = updated_conv
        # In vision mode, the conversation display is produced from the vision branch.
        return chat_history, text_state, vision_state
    else:
        # Text branch
        conv = text_state if text_state is not None else []
        output_text = ""
        for chunk in generate(
            text, conv,
            temperature=text_temperature,
            repetition_penalty=text_repetition_penalty,
            top_p=text_top_p,
            top_k=text_top_k,
            max_new_tokens=text_max_new_tokens
        ):
            output_text = chunk
        conv.append({"role": "user", "content": text})
        conv.append({"role": "assistant", "content": output_text})
        text_state = conv
        chat_history = display_text_conversation(text_state)
        return chat_history, text_state, vision_state

def clear_chat():
    # Clear the conversation and input fields.
    return [], [], [], None  # (chat_history, text_state, vision_state, cleared text and image inputs)

# =============================================================================
# UI Layout with Gradio
# =============================================================================
css_file_path = Path(Path(__file__).parent / "app.css")
head_file_path = Path(Path(__file__).parent / "app_head.html")

with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo:
    gr.HTML(f"<h1>{TITLE}</h1>", elem_classes=["gr_title"])
    gr.HTML(DESCRIPTION)
    
    chatbot = gr.Chatbot(label="Chat History", height=500)
    
    with gr.Row():
        with gr.Column(scale=2):
            image_input = gr.Image(type="pil", label="Upload Image (optional)")
            text_input = gr.Textbox(lines=2, placeholder="Enter your message here", label="Message")
        with gr.Column(scale=1):
            with gr.Accordion("Text Advanced Settings", open=False):
                text_temperature_slider = gr.Slider(minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"])
                repetition_penalty_slider = gr.Slider(minimum=0, maximum=2.0, value=REPETITION_PENALTY, step=0.05, label="Repetition Penalty", elem_classes=["gr_accordion_element"])
                top_p_slider = gr.Slider(minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"])
                top_k_slider = gr.Slider(minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"])
                max_new_tokens_slider = gr.Slider(minimum=1, maximum=2000, value=MAX_NEW_TOKENS, step=1, label="Max New Tokens", elem_classes=["gr_accordion_element"])
            with gr.Accordion("Vision Advanced Settings", open=False):
                vision_temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=VISION_TEMPERATURE, step=0.01, label="Vision Temperature", elem_classes=["gr_accordion_element"])
                vision_top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=VISION_TOP_P, step=0.01, label="Vision Top p", elem_classes=["gr_accordion_element"])
                vision_top_k_slider = gr.Slider(minimum=0, maximum=100, value=VISION_TOP_K, step=1, label="Vision Top k", elem_classes=["gr_accordion_element"])
                vision_max_tokens_slider = gr.Slider(minimum=10, maximum=300, value=VISION_MAX_TOKENS, step=1, label="Vision Max Tokens", elem_classes=["gr_accordion_element"])
    
    send_button = gr.Button("Send Message")
    clear_button = gr.Button("Clear Chat")
    
    # Conversation state variables for each branch.
    text_state = gr.State([])
    vision_state = gr.State([])
    
    send_button.click(
        send_message,
        inputs=[
            image_input, text_input,
            text_temperature_slider, repetition_penalty_slider, top_p_slider, top_k_slider, max_new_tokens_slider,
            vision_temperature_slider, vision_top_p_slider, vision_top_k_slider, vision_max_tokens_slider,
            text_state, vision_state
        ],
        outputs=[chatbot, text_state, vision_state]
    )
    
    clear_button.click(
        clear_chat,
        inputs=None,
        outputs=[chatbot, text_state, vision_state, text_input, image_input]
    )
    
    gr.Examples(
        examples=[
            ["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", "What is in this image?"],
            ["Explain quantum computing to a beginner.", None],
            ["What is OpenShift?", None]
        ],
        inputs=[image_input, text_input],
        example_labels=[
            "Vision Example: What is in this image?",
            "Explain quantum computing",
            "What is OpenShift?"
        ],
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.queue().launch()