File size: 18,495 Bytes
7552eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import gradio as gr
import tempfile
import os
import json
from io import BytesIO
from collections import deque
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from openai import OpenAI
import time

# Imports - Keep only what's actually used.  I've organized them.
from generatorgr import (
    generate_and_save_questions as generate_questions_manager,
    update_max_questions,
)
from generator import (
    PROFESSIONS_FILE,
    TYPES_FILE,
    OUTPUT_FILE,
    load_json_data,
    generate_questions,  # Keep if needed, but ensure it exists
)
from splitgpt import (
    generate_and_save_questions_from_pdf3,
    generate_questions_from_job_description,
)
from ai_config import convert_text_to_speech
from knowledge_retrieval import get_next_response, get_initial_question
from prompt_instructions import get_interview_initial_message_hr
from settings import language
from utils import save_interview_history
from tools import store_interview_report, read_questions_from_json

load_dotenv()  # Load .env variables

class InterviewState:
    """Manages the state of the interview."""

    def __init__(self):
        self.reset()

    def reset(self, voice="alloy"):
        self.question_count = 0
        # Corrected history format: List of [user_msg, bot_msg] pairs.
        self.interview_history = []
        self.selected_interviewer = voice
        self.interview_finished = False
        self.audio_enabled = True
        self.temp_audio_files = []
        self.initial_audio_path = None
        self.interview_chain = None
        self.report_chain = None
        self.current_questions = []
        self.history_limit = 5  # Limit the history (good for performance)

    def get_voice_setting(self):
        return self.selected_interviewer

interview_state = InterviewState()

def initialize_chains():
    """Initializes the LangChain LLM chains."""
    openai_api_key = os.getenv("OPENAI_API_KEY")
    if not openai_api_key:
        raise ValueError(
            "OpenAI API key not found.  Set it in your .env file."
        )

    llm = ChatOpenAI(
        openai_api_key=openai_api_key, model="gpt-4", temperature=0.7, max_tokens=750
    )

    interview_prompt_template = """

    You are Sarah, an empathetic HR interviewer conducting a technical interview in {language}.



    Current Question: {current_question}



    Previous conversation history:

    {history}



    User's response to current question: {user_input}



    Your response:

    """
    interview_prompt = PromptTemplate(
        input_variables=["language", "current_question", "history", "user_input"],
        template=interview_prompt_template,
    )
    interview_state.interview_chain = LLMChain(prompt=interview_prompt, llm=llm)

    report_prompt_template = """

    You are an HR assistant tasked with generating a concise report based on the following interview transcript in {language}:



    {interview_transcript}



    Summarize the candidate's performance, highlighting strengths and areas for improvement. Keep it to 3-5 sentences.

    Report:

    """
    report_prompt = PromptTemplate(
        input_variables=["language", "interview_transcript"], template=report_prompt_template
    )
    interview_state.report_chain = LLMChain(prompt=report_prompt, llm=llm)

def generate_report(report_chain, history, language):
    """Generates a concise interview report."""
    if report_chain is None:
        raise ValueError("Report chain is not initialized.")

    # Convert the Gradio-style history to a plain text transcript.
    transcript = ""
    for user_msg, bot_msg in history:
        transcript += f"User: {user_msg}\nAssistant: {bot_msg}\n"

    report = report_chain.invoke({"language": language, "interview_transcript": transcript})
    return report["text"]

def reset_interview_action(voice):
    """Resets the interview state and prepares the initial message."""
    interview_state.reset(voice)
    initialize_chains()
    print(f"[DEBUG] Interview reset. Voice: {voice}")

    initial_message_text = get_interview_initial_message_hr(5)  # Get initial message

    # Convert to speech and save to a temporary file.
    initial_audio_buffer = BytesIO()
    convert_text_to_speech(initial_message_text, initial_audio_buffer, voice)
    initial_audio_buffer.seek(0)

    with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
        temp_audio_path = temp_file.name
        temp_file.write(initial_audio_buffer.getvalue())

    interview_state.temp_audio_files.append(temp_audio_path)
    print(f"[DEBUG] Audio file saved at {temp_audio_path}")

    # Return values in the correct format for Gradio.
    return (
        [[None, initial_message_text]],  # [user_msg, bot_msg].  User starts with None.
        gr.Audio(value=temp_audio_path, autoplay=True),
        gr.Textbox(interactive=True),  # Enable the textbox
    )

def start_interview():
    """Starts the interview (used by the Gradio button)."""
    return reset_interview_action(interview_state.selected_interviewer)

def construct_history_string(history):
    """Constructs a history string for the LangChain prompt."""
    history_str = ""
    for user_msg, bot_msg in history:
        history_str += f"User: {user_msg}\nAssistant: {bot_msg}\n"
    return history_str

def bot_response(chatbot, user_message_text):
    """Handles the bot's response logic."""
    voice = interview_state.get_voice_setting()
    history_str = construct_history_string(chatbot)

    if interview_state.question_count < len(interview_state.current_questions):
        current_question = interview_state.current_questions[interview_state.question_count]

        response = interview_state.interview_chain.invoke(
            {
                "language": language,
                "current_question": current_question,
                "history": history_str,
                "user_input": user_message_text,
            }
        )["text"]

        interview_state.question_count += 1

        # Text-to-speech
        audio_buffer = BytesIO()
        convert_text_to_speech(response, audio_buffer, voice)
        audio_buffer.seek(0)
        with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
            temp_audio_path = temp_file.name
            temp_file.write(audio_buffer.getvalue())
        interview_state.temp_audio_files.append(temp_audio_path)

        # Update chatbot history in the correct format.
        chatbot.append([user_message_text, response])  # Add user and bot messages

        return chatbot, gr.Audio(value=temp_audio_path, autoplay=True), gr.File(visible=False)

    else:  # Interview finished
        interview_state.interview_finished = True
        conclusion_message = "Thank you for your time. The interview is complete. Please review your report."

        # Text-to-speech for conclusion
        conclusion_audio_buffer = BytesIO()
        convert_text_to_speech(conclusion_message, conclusion_audio_buffer, voice)
        conclusion_audio_buffer.seek(0)
        with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_conclusion_file:
            temp_conclusion_audio_path = temp_conclusion_file.name
            temp_conclusion_file.write(conclusion_audio_buffer.getvalue())
        interview_state.temp_audio_files.append(temp_conclusion_audio_path)

        # Update chatbot history.
        chatbot.append([user_message_text, conclusion_message])

        # Generate and save report.
        report_content = generate_report(
            interview_state.report_chain, chatbot, language
        )  # Pass Gradio history
        txt_path = save_interview_history(
            [f"User: {user}\nAssistant: {bot}" for user, bot in chatbot], language
        )  # Create plain text history
        report_file_path = store_interview_report(report_content)
        print(f"[DEBUG] Interview report saved at: {report_file_path}")

        return (
            chatbot,
            gr.Audio(value=temp_conclusion_audio_path, autoplay=True),
            gr.File(visible=True, value=txt_path),
        )

def convert_text_to_speech_updated(text, voice="alloy"):
    """Converts text to speech and returns the file path."""
    try:
        client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
        response = client.audio.speech.create(model="tts-1", voice=voice, input=text)

        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
            for chunk in response.iter_bytes():
                tmp_file.write(chunk)
            temp_audio_path = tmp_file.name
        return temp_audio_path

    except Exception as e:
        print(f"Error in text-to-speech: {e}")
        return None

def transcribe_audio(audio_file_path):
    """Transcribes audio to text."""
    try:
        client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
        with open(audio_file_path, "rb") as audio_file:
            transcription = client.audio.transcriptions.create(
                model="whisper-1", file=audio_file
            )
        return transcription.text
    except Exception as e:
        print(f"Error in transcription: {e}")
        return ""

def conduct_interview_updated(questions, language="English", history_limit=5):
    """Conducts the interview (LangChain/OpenAI)."""
    openai_api_key = os.getenv("OPENAI_API_KEY")
    if not openai_api_key:
        raise RuntimeError("OpenAI API key not found.")

    chat = ChatOpenAI(
        openai_api_key=openai_api_key, model="gpt-4o", temperature=0.7, max_tokens=750
    )

    conversation_history = deque(maxlen=history_limit)  # For LangChain, not Gradio
    system_prompt = (
        f"You are Sarah, an empathetic HR interviewer conducting a technical interview in {language}. "
        "Respond to user follow-up questions politely and concisely. Keep responses brief."
    )

    interview_data = []  # Store Q&A for potential later use
    current_question_index = [0]
    is_interview_finished = [False]

    initial_message = (
        "πŸ‘‹ Hi there, I'm Sarah, your friendly AI HR assistant! "
        "I'll guide you through a series of interview questions. "
        "Take your time."
    )
    final_message = "That wraps up our interview. Thank you for your responses!"

    def interview_step(user_input, audio_input, history):
        nonlocal current_question_index, is_interview_finished

        if is_interview_finished[0]:
            return history, "", None  # No further interaction

        if audio_input:
            user_input = transcribe_audio(audio_input)
            if not user_input:
                history.append(["", "I couldn't understand your audio. Could you please repeat or type?"]) #Empty string "" so the user input is not None
                audio_path = convert_text_to_speech_updated(history[-1][1]) #Access the content
                return history, "", audio_path

        if user_input.lower() in ["exit", "quit"]:
            history.append(["", "The interview has ended. Thank you."])#Empty string "" so the user input is not None
            is_interview_finished[0] = True
            return history, "", None
        # Crucial: Add USER INPUT to history *before* getting bot response.
        history.append([user_input, ""])  # Add user input, bot response pending

        question_text = questions[current_question_index[0]]
        # Prepare history for LangChain (not Gradio chatbot format)
        history_content = "\n".join(
            [
                f"Q: {entry['question']}\nA: {entry['answer']}"
                for entry in conversation_history
            ]
        )
        combined_prompt = (
            f"{system_prompt}\n\nPrevious conversation history:\n{history_content}\n\n"
            f"Current question: {question_text}\nUser's input: {user_input}\n\n"
            "Respond warmly."
        )

        messages = [
            SystemMessage(content=system_prompt),
            HumanMessage(content=combined_prompt),
        ]

        response = chat.invoke(messages)
        response_content = response.content.strip()
        audio_path = convert_text_to_speech_updated(response_content)

        conversation_history.append({"question": question_text, "answer": user_input})
        interview_data.append({"question": question_text, "answer": user_input})

        # Update Gradio-compatible history.  Crucial for display.
        history[-1][1] = response_content  # Update the last entry with the bot's response

        if current_question_index[0] + 1 < len(questions):
            current_question_index[0] += 1
            next_question = f"Next question: {questions[current_question_index[0]]}"
            next_question_audio_path = convert_text_to_speech_updated(next_question)
            # No need to add the "Next Question:" prompt to the displayed history.
            #  The bot will say it.  Adding it here would cause a double entry.
            return history, "", next_question_audio_path
        else:
            final_message_audio = convert_text_to_speech_updated(final_message)
            history.append([None, final_message])  # Final message, no user input.
            is_interview_finished[0] = True
            return history, "", final_message_audio

    return interview_step, initial_message, final_message


def launch_candidate_app_updated():
    """Launches the Gradio app for candidates."""
    QUESTIONS_FILE_PATH = "questions.json"

    try:
        questions = read_questions_from_json(QUESTIONS_FILE_PATH)
        if not questions:
            raise ValueError("No questions found.")
    except (FileNotFoundError, json.JSONDecodeError, ValueError) as e:
        print(f"Error loading questions: {e}")
        with gr.Blocks() as error_app:
            gr.Markdown(f"# Error: {e}")
        return error_app

    interview_func, initial_message, _ = conduct_interview_updated(questions)

    def start_interview_ui():
        """Starts the interview."""
        history = []
        initial_combined = (
            initial_message + " Let's begin! Here's the first question: " + questions[0]
        )
        initial_audio_path = convert_text_to_speech_updated(initial_combined)
        history.append(["", initial_combined])  # Correct format: [user, bot]  Empty string for user.
        return history, "", initial_audio_path, gr.Textbox(interactive=True) # Return interactive textbox

    def clear_interview_ui():
        """Clears the interview and resets."""
        # Recreate the object in order to clear the history of the interview
        nonlocal interview_func, initial_message
        interview_func, initial_message, _ = conduct_interview_updated(questions)
        return [], "", None, gr.Textbox(interactive=True) # Return interactive textbox

    def interview_step_wrapper(user_response, audio_response, history):
        """Wrapper for the interview step function."""
        history, user_text, audio_path = interview_func(user_response, audio_response, history)
        # Always return interactive=True, except when interview is finished
        return history, "", audio_path, gr.Textbox(value=user_text if user_text is not None else "", interactive= True)
    with gr.Blocks(title="AI HR Interview Assistant") as candidate_app:
        gr.Markdown(
            "<h1 style='text-align: center;'>πŸ‘‹ Welcome to Your AI HR Interview Assistant</h1>"
        )
        start_btn = gr.Button("Start Interview", variant="primary")
        chatbot = gr.Chatbot(label="Interview Chat", height=650)
        audio_input = gr.Audio(
            sources=["microphone"], type="filepath", label="Record Your Answer"
        )
        user_input = gr.Textbox(
            label="Your Response",
            placeholder="Type your answer here or use the microphone...",
            lines=1,
            interactive=True,  # Make the textbox interactive initially
        )
        audio_output = gr.Audio(label="Response Audio", autoplay=True)

        with gr.Row():
            submit_btn = gr.Button("Submit", variant="primary")
            clear_btn = gr.Button("Clear Chat")

        def on_enter_submit(history, user_response):
            """Handles submission when Enter is pressed."""
            if not user_response.strip():
                return history, "", None, gr.Textbox(interactive=True)  # Prevent empty submissions, keep interactive
            history, _, audio_path, new_textbox = interview_step_wrapper(
                user_response, None, history
            )  # No audio on Enter
            return history, "", audio_path, new_textbox

        start_btn.click(
            start_interview_ui, inputs=[], outputs=[chatbot, user_input, audio_output, user_input] # Include user_input as output
        )
        audio_input.stop_recording(
            interview_step_wrapper,
            inputs=[user_input, audio_input, chatbot],
            outputs=[chatbot, user_input, audio_output, user_input], # Include user_input as output
        )
        submit_btn.click(
            interview_step_wrapper,
            inputs=[user_input, audio_input, chatbot],
            outputs=[chatbot, user_input, audio_output, user_input],  # Include user_input
        )
        user_input.submit(
            on_enter_submit,
            inputs=[chatbot, user_input],
            outputs=[chatbot, user_input, audio_output, user_input], # Include user_input
        )
        clear_btn.click(
            clear_interview_ui, inputs=[], outputs=[chatbot, user_input, audio_output, user_input] # Include user_input
        )

    return candidate_app
# --- (End of Candidate Interview Implementation) ---


def cleanup():
    """Cleans up temporary audio files."""
    for audio_file in interview_state.temp_audio_files:
        try:
            if os.path.exists(audio_file):
                os.unlink(audio_file)
        except Exception as e:
            print(f"Error deleting file {audio_file}: {e}")