File size: 8,852 Bytes
306849a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b956ac5
306849a
 
 
 
 
 
 
 
b956ac5
306849a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b956ac5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306849a
 
 
b956ac5
 
 
 
 
306849a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import zipfile
import os
import shutil
import subprocess
from chat_with_project import query_project
from get_prompts import get_prompt_for_mode
from dotenv import load_dotenv, set_key
from milvus import initialize_milvus, DEFAULT_MILVUS_HOST, DEFAULT_MILVUS_PORT, DEFAULT_COLLECTION_NAME, DEFAULT_DIMENSION, DEFAULT_MAX_RETRIES, DEFAULT_RETRY_DELAY

# --- Configuration and Setup ---

# Define paths for workspace and extraction directories
WORKSPACE_DIR = "workspace"
EXTRACTION_DIR = "extraction"

def clear_directories():
    """Clears the workspace and extraction directories."""
    for directory in [WORKSPACE_DIR, EXTRACTION_DIR]:
        if os.path.exists(directory):
            shutil.rmtree(directory)
        os.makedirs(directory, exist_ok=True)

# Clear directories at startup
clear_directories()

# --- API Key Management ---

def ensure_env_file_exists():
    """Ensures that a .env file exists in the project root."""
    if not os.path.exists(".env"):
        with open(".env", "w") as f:
            f.write("")  # Create an empty .env file

def load_api_key():
    """Loads the API key from the .env file or the environment."""
    ensure_env_file_exists()
    load_dotenv()
    return os.environ.get("OPENAI_API_KEY")

def update_api_key(api_key):
    """Updates the API key in the .env file."""
    if api_key:
        set_key(".env", "OPENAI_API_KEY", api_key)
        load_dotenv()  # Reload environment variables
        return "API key updated successfully."
    else:
        return "API key cannot be empty."

def is_api_key_set():
    """Checks if the API key is set."""
    return bool(load_api_key())

# --- Core Functionalities ---

def process_zip(zip_file_path):
    """Extracts a zip file, analyzes content, and stores information."""
    try:
        # Clear existing workspace and extraction directories before processing
        clear_directories()
        
        # Extract the zip file
        with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
            zip_ref.extractall(WORKSPACE_DIR)

        # Run extract.py
        subprocess.run(["python", "./utils/extract.py", WORKSPACE_DIR], check=True)

        return "Processing complete! Results saved in the 'extraction' directory."

    except Exception as e:
        return f"An error occurred: {e}"

def init_milvus(milvus_host, milvus_port, collection_name, dimension, max_retries, retry_delay):
    """Initializes or loads the Milvus vector database."""
    try:
        # Convert string inputs to appropriate types
        milvus_port = int(milvus_port)
        dimension = int(dimension)
        max_retries = int(max_retries)
        retry_delay = int(retry_delay)

        initialize_milvus(milvus_host, milvus_port, collection_name, dimension, max_retries, retry_delay)
        return "Milvus database initialized or loaded successfully."

    except Exception as e:
        return f"Error initializing Milvus: {e}"

# --- Chatbot Verification ---

def is_project_loaded():
    """Checks if a project has been loaded (i.e., if the extraction directory contains .pkl files)."""
    extraction_dir = "extraction"
    pkl_files = [f for f in os.listdir(extraction_dir) if f.endswith('.pkl')]
    return bool(pkl_files)

# --- Gradio UI Components ---

# Chat Interface
def chat_ui(query, history, mode):
    """Handles the chat interaction for Analyzer, Debugger, and Developer modes."""
    api_key = load_api_key()
    if not api_key:
        return "Error: OpenAI API key not set. Please set the API key in the Settings tab.", []

    if not is_project_loaded():
        return "Error: No project loaded. Please upload and process a ZIP file first.", []

    # Initialize history if None
    if history is None:
        history = []

    print(f"Chat Mode: {mode}")
    system_prompt = get_prompt_for_mode(mode)
    print(f"System Prompt: {system_prompt}")

    # Pass the query and system prompt to the LLM
    response = query_project(query, system_prompt)
    print(f"Response from query_project: {response}")

    if response is None or not response.strip():
        response = "An error occurred during processing. Please check the logs."

    if mode == "developer":
        # Split the response into chunks based on "---"
        chunks = response.split("---")
        formatted_response_parts = []

        for chunk in chunks:
            if chunk.strip().startswith("BEGIN FILE:"):
                # Extract filepath and code content
                filepath = chunk.split("BEGIN FILE:")[1].split("\n")[0].strip()
                code_content = chunk.replace(f"BEGIN FILE: {filepath}\n", "").strip()
                
                # Remove "END FILE:" and its associated filepath if present at the end.
                if code_content.rfind("END FILE:") != -1:
                    end_file_index = code_content.rfind("END FILE:")
                    code_content = code_content[:end_file_index].strip()
                
                formatted_response_parts.append(f"**{filepath}:**\n`python\n{code_content}\n`")
            elif chunk.strip():
                formatted_response_parts.append(chunk.strip())

        # Join the formatted parts with separators
        formatted_response = "\n---\n".join(formatted_response_parts)

    else:
        # Format the output for non-developer modes
        formatted_response = response.replace('\n', '  \n')

    history.append((query, formatted_response))

    return history, history

# ZIP Processing Interface
zip_iface = gr.Interface(
    fn=process_zip,
    inputs=gr.File(label="Upload ZIP File"),
    outputs="text",
    title="Zip File Analyzer",
    description="Upload a zip file to analyze and store its contents.",
)

# Milvus Initialization Interface
milvus_iface = gr.Interface(
    fn=init_milvus,
    inputs=[
        gr.Textbox(label="Milvus Host", placeholder=DEFAULT_MILVUS_HOST, value=DEFAULT_MILVUS_HOST),
        gr.Textbox(label="Milvus Port", placeholder=DEFAULT_MILVUS_PORT, value=DEFAULT_MILVUS_PORT),
        gr.Textbox(label="Collection Name", placeholder=DEFAULT_COLLECTION_NAME, value=DEFAULT_COLLECTION_NAME),
        gr.Textbox(label="Dimension", placeholder=str(DEFAULT_DIMENSION), value=str(DEFAULT_DIMENSION)),
        gr.Textbox(label="Max Retries", placeholder=str(DEFAULT_MAX_RETRIES), value=str(DEFAULT_MAX_RETRIES)),
        gr.Textbox(label="Retry Delay (seconds)", placeholder=str(DEFAULT_RETRY_DELAY), value=str(DEFAULT_RETRY_DELAY))
    ],
    outputs="text",
    title="Milvus Database Initialization",
    description="Initialize or load the Milvus vector database.",
)

# Gradio Chatbot UI Interface
chat_iface = gr.Interface(
    fn=chat_ui,
    inputs=[
        gr.Textbox(label="Ask a question", placeholder="Type your question here"),
        gr.State(),  # Maintains chat history
        gr.Radio(["analyzer", "debugger", "developer"], label="Chat Mode", value="analyzer")
    ],
    outputs=[
        gr.Chatbot(label="Chat with Project"),
        "state" # This is to store the state,
    ],
    title="Chat with your Project",
    description="Ask questions about the data extracted from the zip file.",
    # Example usage - Corrected to only include instruction and mode
    examples=[
        ["What is this project about?", "analyzer"],
        ["Are there any potential bugs?", "debugger"], 
        ["How does the data flow through the application?", "analyzer"],
        ["Explain the main components of the architecture.", "analyzer"],
        ["What are the dependencies of this project?",  "analyzer"],
        ["Are there any potential memory leaks?",  "debugger"],
        ["Identify any areas where the code could be optimized.","debugger"],
        ["Implement basic logging for the main application and save logs to a file.",  "developer"],
        ["Use try/except blocks in main functions to handle exceptions",  "developer"]

    ],
)

# Settings Interface
settings_iface = gr.Interface(
    fn=update_api_key,
    inputs=gr.Textbox(label="OpenAI API Key", type="password"),
    outputs="text",
    title="Settings",
    description="Set your OpenAI API key.",
)

# Status Interface
def get_api_key_status():
    if is_api_key_set():
        return "API key status: Set"
    else:
        return "API key status: Not set"

status_iface = gr.Interface(
    fn=get_api_key_status,
    inputs=None,
    outputs="text",
    live=True,
    title="API Key Status"
)

# Add credits to the UI
credits = gr.Markdown("## Credits\n\nCreated by [Ruslan Magana Vsevolodovna](https://ruslanmv.com/)")

# --- Main Application Launch ---

# Combine the interfaces using Tabs
demo = gr.TabbedInterface(
    [zip_iface, milvus_iface, chat_iface, settings_iface, status_iface],
    ["Process ZIP", "Init Milvus", "Chat with Project", "Settings", "Status"],
)

# Launch the app with credits
demo.queue().launch()