Spaces:
Running
Running
First commit
Browse files
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Initialize the inference client with the new LLM
|
6 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
7 |
+
|
8 |
+
# Define the system prompt for enhancing user prompts
|
9 |
+
SYSTEM_PROMPT = (
|
10 |
+
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
|
11 |
+
"without changing the essence, only write the enhanced prompt and nothing else."
|
12 |
+
)
|
13 |
+
|
14 |
+
def format_prompt(message):
|
15 |
+
"""
|
16 |
+
Format the input message using the system prompt and a timestamp to ensure uniqueness.
|
17 |
+
"""
|
18 |
+
timestamp = time.time()
|
19 |
+
formatted = (
|
20 |
+
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
|
21 |
+
f"[INST] {message} {timestamp} [/INST]"
|
22 |
+
)
|
23 |
+
return formatted
|
24 |
+
|
25 |
+
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
|
26 |
+
"""
|
27 |
+
Generate an enhanced prompt using the new LLM.
|
28 |
+
This function yields intermediate results as they are generated.
|
29 |
+
"""
|
30 |
+
temperature = float(temperature)
|
31 |
+
if temperature < 1e-2:
|
32 |
+
temperature = 1e-2
|
33 |
+
top_p = float(top_p)
|
34 |
+
generate_kwargs = {
|
35 |
+
"temperature": temperature,
|
36 |
+
"max_new_tokens": int(max_new_tokens),
|
37 |
+
"top_p": top_p,
|
38 |
+
"repetition_penalty": float(repetition_penalty),
|
39 |
+
"do_sample": True,
|
40 |
+
}
|
41 |
+
formatted_prompt = format_prompt(message)
|
42 |
+
stream = client.text_generation(
|
43 |
+
formatted_prompt,
|
44 |
+
**generate_kwargs,
|
45 |
+
stream=True,
|
46 |
+
details=True,
|
47 |
+
return_full_text=False,
|
48 |
+
)
|
49 |
+
output = ""
|
50 |
+
for response in stream:
|
51 |
+
token_text = response.token.text
|
52 |
+
output += token_text
|
53 |
+
yield output.strip('</s>')
|
54 |
+
return output.strip('</s>')
|
55 |
+
|
56 |
+
# Markdown texts for credits and best practices
|
57 |
+
CREDITS_MARKDOWN = """
|
58 |
+
# Prompt Enhancer
|
59 |
+
Credits: Instructions and design inspired by [ruslanmv.com](https://ruslanmv.com).
|
60 |
+
"""
|
61 |
+
|
62 |
+
BEST_PRACTICES = """
|
63 |
+
**Best Practices**
|
64 |
+
- Be specific and clear in your input prompt
|
65 |
+
- Use temperature 0.0 for consistent, focused results
|
66 |
+
- Increase temperature up to 1.0 for more creative variations
|
67 |
+
- Review and iterate on engineered prompts for optimal results
|
68 |
+
"""
|
69 |
+
|
70 |
+
# Build the Gradio interface with the Ocean theme
|
71 |
+
with gr.Blocks(theme=gr.themes.Ocean(), css=".gradio-container { max-width: 800px; margin: auto; }") as demo:
|
72 |
+
# Credits at the top
|
73 |
+
gr.Markdown(CREDITS_MARKDOWN)
|
74 |
+
|
75 |
+
gr.Markdown(
|
76 |
+
"Enhance your prompt to under 100 words while preserving its essence. "
|
77 |
+
"Adjust the generation parameters as needed."
|
78 |
+
)
|
79 |
+
|
80 |
+
with gr.Row():
|
81 |
+
with gr.Column(scale=1):
|
82 |
+
input_prompt = gr.Textbox(
|
83 |
+
label="Input Prompt",
|
84 |
+
placeholder="Enter your prompt here...",
|
85 |
+
lines=4,
|
86 |
+
)
|
87 |
+
max_tokens_slider = gr.Slider(
|
88 |
+
label="Max New Tokens",
|
89 |
+
minimum=50,
|
90 |
+
maximum=512,
|
91 |
+
step=1,
|
92 |
+
value=256,
|
93 |
+
)
|
94 |
+
temperature_slider = gr.Slider(
|
95 |
+
label="Temperature",
|
96 |
+
minimum=0.1,
|
97 |
+
maximum=2.0,
|
98 |
+
step=0.1,
|
99 |
+
value=0.9,
|
100 |
+
)
|
101 |
+
top_p_slider = gr.Slider(
|
102 |
+
label="Top-p (nucleus sampling)",
|
103 |
+
minimum=0.1,
|
104 |
+
maximum=1.0,
|
105 |
+
step=0.05,
|
106 |
+
value=0.95,
|
107 |
+
)
|
108 |
+
repetition_penalty_slider = gr.Slider(
|
109 |
+
label="Repetition Penalty",
|
110 |
+
minimum=1.0,
|
111 |
+
maximum=2.0,
|
112 |
+
step=0.05,
|
113 |
+
value=1.0,
|
114 |
+
)
|
115 |
+
generate_button = gr.Button("Enhance Prompt")
|
116 |
+
with gr.Column(scale=1):
|
117 |
+
output_prompt = gr.Textbox(
|
118 |
+
label="Enhanced Prompt",
|
119 |
+
lines=10,
|
120 |
+
interactive=True,
|
121 |
+
)
|
122 |
+
|
123 |
+
# Best practices message at the bottom
|
124 |
+
gr.Markdown(BEST_PRACTICES)
|
125 |
+
|
126 |
+
# Wire the button click to the generate function (streaming functionality is handled internally)
|
127 |
+
generate_button.click(
|
128 |
+
fn=generate,
|
129 |
+
inputs=[
|
130 |
+
input_prompt,
|
131 |
+
max_tokens_slider,
|
132 |
+
temperature_slider,
|
133 |
+
top_p_slider,
|
134 |
+
repetition_penalty_slider,
|
135 |
+
],
|
136 |
+
outputs=output_prompt,
|
137 |
+
)
|
138 |
+
|
139 |
+
demo.launch()
|