Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -70,7 +70,7 @@ DESCRIPTION = (
|
|
70 |
TITLE = "Video Story Generator with Audio by using FLUX, distilbart, and GTTS."
|
71 |
|
72 |
# Load Tokenizer and Model for Text Summarization
|
73 |
-
def
|
74 |
"""Load the tokenizer and model for text summarization."""
|
75 |
print("Loading text summarization model...")
|
76 |
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
@@ -80,6 +80,19 @@ def load_text_summarization_model():
|
|
80 |
model.to(device)
|
81 |
return tokenizer, model, device
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
tokenizer, model, device = load_text_summarization_model()
|
84 |
|
85 |
# Log GPU Memory (optional, for debugging)
|
@@ -102,8 +115,8 @@ def check_gpu_availability():
|
|
102 |
|
103 |
check_gpu_availability()
|
104 |
|
105 |
-
|
106 |
-
def
|
107 |
text: str,
|
108 |
seed: int = 42,
|
109 |
width: int = 1024,
|
@@ -141,6 +154,48 @@ def generate_image_with_flux(
|
|
141 |
print("DEBUG: Image generated successfully.")
|
142 |
return image
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
# --------- End of MinDalle Functions ---------
|
145 |
# Merge audio files
|
146 |
|
@@ -165,8 +220,18 @@ def merge_audio_files(mp3_names: List[str]) -> str:
|
|
165 |
|
166 |
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
# Function to generate video from text
|
169 |
-
def
|
170 |
print("DEBUG: Starting get_output_video function...")
|
171 |
|
172 |
# Summarize the input text
|
@@ -320,6 +385,183 @@ def get_output_video(text, seed, randomize_seed, width, height, num_inference_st
|
|
320 |
print("DEBUG: get_output_video function completed successfully.")
|
321 |
return 'result_final.mp4'
|
322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
# Example text (can be changed by user in Gradio interface)
|
324 |
text = 'Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.'
|
325 |
|
|
|
70 |
TITLE = "Video Story Generator with Audio by using FLUX, distilbart, and GTTS."
|
71 |
|
72 |
# Load Tokenizer and Model for Text Summarization
|
73 |
+
def load_text_summarization_model_V1():
|
74 |
"""Load the tokenizer and model for text summarization."""
|
75 |
print("Loading text summarization model...")
|
76 |
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
|
|
80 |
model.to(device)
|
81 |
return tokenizer, model, device
|
82 |
|
83 |
+
def load_text_summarization_model():
|
84 |
+
"""Load the tokenizer and model for text summarization on CPU."""
|
85 |
+
print("Loading text summarization model...")
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
87 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
88 |
+
# Remove the line that sets the device here
|
89 |
+
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
90 |
+
# print(f"Using device: {device}")
|
91 |
+
# model.to(device)
|
92 |
+
return tokenizer, model
|
93 |
+
|
94 |
+
tokenizer, model = load_text_summarization_model()
|
95 |
+
|
96 |
tokenizer, model, device = load_text_summarization_model()
|
97 |
|
98 |
# Log GPU Memory (optional, for debugging)
|
|
|
115 |
|
116 |
check_gpu_availability()
|
117 |
|
118 |
+
#@spaces.GPU()
|
119 |
+
def generate_image_with_flux_old(
|
120 |
text: str,
|
121 |
seed: int = 42,
|
122 |
width: int = 1024,
|
|
|
154 |
print("DEBUG: Image generated successfully.")
|
155 |
return image
|
156 |
|
157 |
+
|
158 |
+
@spaces.GPU()
|
159 |
+
def generate_image_with_flux(
|
160 |
+
text: str,
|
161 |
+
seed: int = 42,
|
162 |
+
width: int = 1024,
|
163 |
+
height: int = 1024,
|
164 |
+
num_inference_steps: int = 4,
|
165 |
+
randomize_seed: bool = True):
|
166 |
+
"""
|
167 |
+
Generates an image from text using FLUX.
|
168 |
+
Args:
|
169 |
+
text: The text prompt to generate the image from.
|
170 |
+
seed: The random seed for image generation. -1 for random.
|
171 |
+
width: Width of the generated image.
|
172 |
+
height: Height of the generated image.
|
173 |
+
num_inference_steps: Number of inference steps.
|
174 |
+
randomize_seed: Whether to randomize the seed.
|
175 |
+
Returns:
|
176 |
+
A PIL Image object.
|
177 |
+
"""
|
178 |
+
print(f"DEBUG: Generating image with FLUX for text: '{text}'")
|
179 |
+
|
180 |
+
# Initialize FLUX pipeline here
|
181 |
+
dtype = torch.bfloat16
|
182 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
183 |
+
flux_pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
184 |
+
|
185 |
+
if randomize_seed:
|
186 |
+
seed = random.randint(0, MAX_SEED)
|
187 |
+
generator = torch.Generator(device=device).manual_seed(seed) # Specify device for generator
|
188 |
+
image = flux_pipe(
|
189 |
+
prompt=text,
|
190 |
+
width=width,
|
191 |
+
height=height,
|
192 |
+
num_inference_steps=num_inference_steps,
|
193 |
+
generator=generator,
|
194 |
+
guidance_scale=0.0
|
195 |
+
).images[0]
|
196 |
+
print("DEBUG: Image generated successfully.")
|
197 |
+
return image
|
198 |
+
|
199 |
# --------- End of MinDalle Functions ---------
|
200 |
# Merge audio files
|
201 |
|
|
|
220 |
|
221 |
|
222 |
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
# Function to generate video from text
|
234 |
+
def get_output_video_old(text, seed, randomize_seed, width, height, num_inference_steps):
|
235 |
print("DEBUG: Starting get_output_video function...")
|
236 |
|
237 |
# Summarize the input text
|
|
|
385 |
print("DEBUG: get_output_video function completed successfully.")
|
386 |
return 'result_final.mp4'
|
387 |
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
|
392 |
+
# Function to generate video from text
|
393 |
+
|
394 |
+
|
395 |
+
|
396 |
+
|
397 |
+
|
398 |
+
@spaces.GPU()
|
399 |
+
def get_output_video(text, seed, randomize_seed, width, height, num_inference_steps):
|
400 |
+
print("DEBUG: Starting get_output_video function...")
|
401 |
+
|
402 |
+
# Set the device here, inside the GPU-accelerated function
|
403 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
404 |
+
|
405 |
+
# Move the model to the GPU
|
406 |
+
model.to(device)
|
407 |
+
|
408 |
+
# Summarize the input text
|
409 |
+
print("DEBUG: Summarizing text...")
|
410 |
+
inputs = tokenizer(
|
411 |
+
text,
|
412 |
+
max_length=1024,
|
413 |
+
truncation=True,
|
414 |
+
return_tensors="pt"
|
415 |
+
).to(device) # Now it's safe to move to the device
|
416 |
+
summary_ids = model.generate(inputs["input_ids"].to(device)) # .to(device) here
|
417 |
+
summary = tokenizer.batch_decode(
|
418 |
+
summary_ids,
|
419 |
+
skip_special_tokens=True,
|
420 |
+
clean_up_tokenization_spaces=False
|
421 |
+
)
|
422 |
+
plot = list(summary[0].split('.'))
|
423 |
+
print(f"DEBUG: Summary generated: {plot}")
|
424 |
+
|
425 |
+
image_system ="Generate a realistic picture about this: "
|
426 |
+
|
427 |
+
# Generate images for each sentence in the plot
|
428 |
+
generated_images = []
|
429 |
+
for i, senten in enumerate(plot[:-1]):
|
430 |
+
print(f"DEBUG: Generating image {i+1} of {len(plot)-1}...")
|
431 |
+
image_dir = f"image_{i}"
|
432 |
+
os.makedirs(image_dir, exist_ok=True)
|
433 |
+
image = generate_image_with_flux(
|
434 |
+
text= image_system + senten,
|
435 |
+
seed=seed,
|
436 |
+
randomize_seed=randomize_seed,
|
437 |
+
width=width,
|
438 |
+
height=height,
|
439 |
+
num_inference_steps=num_inference_steps
|
440 |
+
)
|
441 |
+
generated_images.append(image)
|
442 |
+
image_path = os.path.join(image_dir, "generated_image.png")
|
443 |
+
image.save(image_path)
|
444 |
+
print(f"DEBUG: Image generated and saved to {image_path}")
|
445 |
+
|
446 |
+
#del min_dalle_model # No need to delete the model here
|
447 |
+
# torch.cuda.empty_cache() # No need to empty cache here
|
448 |
+
# gc.collect() # No need to collect garbage here
|
449 |
+
|
450 |
+
# Create subtitles from the plot
|
451 |
+
sentences = plot[:-1]
|
452 |
+
print("DEBUG: Creating subtitles...")
|
453 |
+
assert len(generated_images) == len(sentences), "Mismatch in number of images and sentences."
|
454 |
+
sub_names = [nltk.tokenize.sent_tokenize(sentence) for sentence in sentences]
|
455 |
+
|
456 |
+
# Add subtitles to images with dynamic adjustments
|
457 |
+
def get_dynamic_wrap_width(font, text, image_width, padding):
|
458 |
+
# Estimate the number of characters per line dynamically
|
459 |
+
avg_char_width = sum(font.getbbox(c)[2] for c in text) / len(text)
|
460 |
+
return max(1, (image_width - padding * 2) // avg_char_width)
|
461 |
+
|
462 |
+
def draw_multiple_line_text(image, text, font, text_color, text_start_height, padding=10):
|
463 |
+
draw = ImageDraw.Draw(image)
|
464 |
+
image_width, _ = image.size
|
465 |
+
y_text = text_start_height
|
466 |
+
lines = textwrap.wrap(text, width=get_dynamic_wrap_width(font, text, image_width, padding))
|
467 |
+
for line in lines:
|
468 |
+
line_width, line_height = font.getbbox(line)[2:]
|
469 |
+
draw.text(((image_width - line_width) / 2, y_text), line, font=font, fill=text_color)
|
470 |
+
y_text += line_height + padding
|
471 |
+
|
472 |
+
def add_text_to_img(text1, image_input):
|
473 |
+
print(f"DEBUG: Adding text to image: '{text1}'")
|
474 |
+
# Scale font size dynamically
|
475 |
+
base_font_size = 30
|
476 |
+
image_width, image_height = image_input.size
|
477 |
+
scaled_font_size = max(10, int(base_font_size * (image_width / 800)))
|
478 |
+
path_font = "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf"
|
479 |
+
if not os.path.exists(path_font):
|
480 |
+
path_font = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
481 |
+
font = ImageFont.truetype(path_font, scaled_font_size)
|
482 |
+
|
483 |
+
text_color = (255, 255, 0)
|
484 |
+
padding = 10
|
485 |
+
|
486 |
+
# Estimate starting height dynamically
|
487 |
+
line_height = font.getbbox("A")[3] + padding
|
488 |
+
total_text_height = len(textwrap.wrap(text1, get_dynamic_wrap_width(font, text1, image_width, padding))) * line_height
|
489 |
+
text_start_height = image_height - total_text_height - 20
|
490 |
+
|
491 |
+
draw_multiple_line_text(image_input, text1, font, text_color, text_start_height, padding)
|
492 |
+
return image_input
|
493 |
+
|
494 |
+
|
495 |
+
# Process images with subtitles
|
496 |
+
generated_images_sub = []
|
497 |
+
for k, image in enumerate(generated_images):
|
498 |
+
text_to_add = sub_names[k][0]
|
499 |
+
result = add_text_to_img(text_to_add, image.copy())
|
500 |
+
generated_images_sub.append(result)
|
501 |
+
result.save(f"image_{k}/generated_image_with_subtitles.png")
|
502 |
+
|
503 |
+
|
504 |
+
|
505 |
+
# Generate audio for each subtitle
|
506 |
+
mp3_names = []
|
507 |
+
mp3_lengths = []
|
508 |
+
for k, text_to_add in enumerate(sub_names):
|
509 |
+
print(f"DEBUG: Generating audio for: '{text_to_add[0]}'")
|
510 |
+
f_name = f'audio_{k}.mp3'
|
511 |
+
mp3_names.append(f_name)
|
512 |
+
myobj = gTTS(text=text_to_add[0], lang='en', slow=False)
|
513 |
+
myobj.save(f_name)
|
514 |
+
audio = MP3(f_name)
|
515 |
+
mp3_lengths.append(audio.info.length)
|
516 |
+
print(f"DEBUG: Audio duration: {audio.info.length} seconds")
|
517 |
+
|
518 |
+
# Merge audio files
|
519 |
+
export_path = merge_audio_files(mp3_names)
|
520 |
+
|
521 |
+
# Create video clips from images
|
522 |
+
clips = []
|
523 |
+
for k, img in enumerate(generated_images_sub):
|
524 |
+
duration = mp3_lengths[k]
|
525 |
+
print(f"DEBUG: Creating video clip {k+1} with duration: {duration} seconds")
|
526 |
+
clip = mpy.ImageClip(f"image_{k}/generated_image_with_subtitles.png").set_duration(duration + 0.5)
|
527 |
+
clips.append(clip)
|
528 |
+
|
529 |
+
# Concatenate video clips
|
530 |
+
print("DEBUG: Concatenating video clips...")
|
531 |
+
concat_clip = mpy.concatenate_videoclips(clips, method="compose")
|
532 |
+
concat_clip.write_videofile("result_no_audio.mp4", fps=24, logger=None)
|
533 |
+
|
534 |
+
# Combine video and audio
|
535 |
+
movie_name = 'result_no_audio.mp4'
|
536 |
+
movie_final = 'result_final.mp4'
|
537 |
+
|
538 |
+
def combine_audio(vidname, audname, outname, fps=24):
|
539 |
+
print(f"DEBUG: Combining audio for video: '{vidname}'")
|
540 |
+
my_clip = mpy.VideoFileClip(vidname)
|
541 |
+
audio_background = mpy.AudioFileClip(audname)
|
542 |
+
final_clip = my_clip.set_audio(audio_background)
|
543 |
+
final_clip.write_videofile(outname, fps=fps, logger=None)
|
544 |
+
|
545 |
+
combine_audio(movie_name, export_path, movie_final)
|
546 |
+
|
547 |
+
# Clean up
|
548 |
+
print("DEBUG: Cleaning up files...")
|
549 |
+
for i in range(len(generated_images_sub)):
|
550 |
+
shutil.rmtree(f"image_{i}")
|
551 |
+
os.remove(f"audio_{i}.mp3")
|
552 |
+
os.remove("result.mp3")
|
553 |
+
os.remove("result_no_audio.mp4")
|
554 |
+
|
555 |
+
print("DEBUG: Cleanup complete.")
|
556 |
+
print("DEBUG: get_output_video function completed successfully.")
|
557 |
+
return 'result_final.mp4'
|
558 |
+
|
559 |
+
|
560 |
+
|
561 |
+
|
562 |
+
|
563 |
+
|
564 |
+
|
565 |
# Example text (can be changed by user in Gradio interface)
|
566 |
text = 'Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.'
|
567 |
|