Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -21,7 +21,7 @@ from mutagen.mp3 import MP3
|
|
21 |
from gtts import gTTS
|
22 |
from pydub import AudioSegment
|
23 |
import textwrap
|
24 |
-
|
25 |
# Log GPU Memory (optional, for debugging)
|
26 |
def log_gpu_memory():
|
27 |
"""Log GPU memory usage."""
|
@@ -84,49 +84,6 @@ def load_text_summarization_model():
|
|
84 |
tokenizer, model = load_text_summarization_model()
|
85 |
|
86 |
|
87 |
-
#@spaces.GPU()
|
88 |
-
def generate_image_with_flux_old(
|
89 |
-
text: str,
|
90 |
-
seed: int = 42,
|
91 |
-
width: int = 1024,
|
92 |
-
height: int = 1024,
|
93 |
-
num_inference_steps: int = 4,
|
94 |
-
randomize_seed: bool = True):
|
95 |
-
"""
|
96 |
-
Generates an image from text using FLUX.
|
97 |
-
Args:
|
98 |
-
text: The text prompt to generate the image from.
|
99 |
-
seed: The random seed for image generation. -1 for random.
|
100 |
-
width: Width of the generated image.
|
101 |
-
height: Height of the generated image.
|
102 |
-
num_inference_steps: Number of inference steps.
|
103 |
-
randomize_seed: Whether to randomize the seed.
|
104 |
-
Returns:
|
105 |
-
A PIL Image object.
|
106 |
-
"""
|
107 |
-
print(f"DEBUG: Generating image with FLUX for text: '{text}'")
|
108 |
-
|
109 |
-
# Initialize FLUX pipeline here
|
110 |
-
dtype = torch.bfloat16
|
111 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
112 |
-
torch.cuda.empty_cache() # Clear cache
|
113 |
-
gc.collect() # Run garbage collection
|
114 |
-
flux_pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
115 |
-
|
116 |
-
if randomize_seed:
|
117 |
-
seed = random.randint(0, MAX_SEED)
|
118 |
-
generator = torch.Generator(device=device).manual_seed(seed) # Specify device for generator
|
119 |
-
image = flux_pipe(
|
120 |
-
prompt=text,
|
121 |
-
width=width,
|
122 |
-
height=height,
|
123 |
-
num_inference_steps=num_inference_steps,
|
124 |
-
generator=generator,
|
125 |
-
guidance_scale=0.0
|
126 |
-
).images[0]
|
127 |
-
print("DEBUG: Image generated successfully.")
|
128 |
-
return image
|
129 |
-
|
130 |
@spaces.GPU()
|
131 |
def generate_image_with_flux(
|
132 |
text: str,
|
|
|
21 |
from gtts import gTTS
|
22 |
from pydub import AudioSegment
|
23 |
import textwrap
|
24 |
+
nltk.download('punkt_tab')
|
25 |
# Log GPU Memory (optional, for debugging)
|
26 |
def log_gpu_memory():
|
27 |
"""Log GPU memory usage."""
|
|
|
84 |
tokenizer, model = load_text_summarization_model()
|
85 |
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
@spaces.GPU()
|
88 |
def generate_image_with_flux(
|
89 |
text: str,
|