Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -34,34 +34,25 @@ from gtts import gTTS
|
|
34 |
from pydub import AudioSegment
|
35 |
import textwrap
|
36 |
|
37 |
-
|
38 |
# Initialize FLUX pipeline only if CUDA is available
|
39 |
dtype = torch.bfloat16
|
40 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
return None
|
50 |
-
|
51 |
-
flux_pipe = None # Do not load at startup
|
52 |
|
53 |
MAX_SEED = np.iinfo(np.int32).max
|
54 |
MAX_IMAGE_SIZE = 2048
|
55 |
|
56 |
nltk.download('punkt')
|
57 |
|
58 |
-
|
59 |
# Ensure proper multiprocessing start method
|
60 |
-
|
61 |
-
multiprocessing.set_start_method("spawn", force=True)
|
62 |
-
except RuntimeError:
|
63 |
-
pass # Ignore errors if the start method is already set
|
64 |
-
|
65 |
|
66 |
# Download necessary NLTK data
|
67 |
def setup_nltk():
|
@@ -79,7 +70,7 @@ DESCRIPTION = (
|
|
79 |
TITLE = "Video Story Generator with Audio by using FLUX, distilbart, and GTTS."
|
80 |
|
81 |
# Load Tokenizer and Model for Text Summarization
|
82 |
-
def
|
83 |
"""Load the tokenizer and model for text summarization."""
|
84 |
print("Loading text summarization model...")
|
85 |
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
@@ -89,25 +80,6 @@ def load_text_summarization_model_v1():
|
|
89 |
model.to(device)
|
90 |
return tokenizer, model, device
|
91 |
|
92 |
-
def load_text_summarization_model():
|
93 |
-
"""Load the tokenizer and model for text summarization without triggering CUDA init."""
|
94 |
-
print("Loading text summarization model...")
|
95 |
-
|
96 |
-
if "SPACE_ID" in os.environ: # Detect if running in Hugging Face Spaces
|
97 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Prevent CUDA initialization
|
98 |
-
|
99 |
-
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
100 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
101 |
-
|
102 |
-
if torch.cuda.is_available() and "SPACE_ID" not in os.environ:
|
103 |
-
device = torch.device("cuda:0")
|
104 |
-
else:
|
105 |
-
device = torch.device("cpu")
|
106 |
-
|
107 |
-
print(f"Using device: {device}")
|
108 |
-
model.to(device)
|
109 |
-
return tokenizer, model, device
|
110 |
-
|
111 |
tokenizer, model, device = load_text_summarization_model()
|
112 |
|
113 |
# Log GPU Memory (optional, for debugging)
|
@@ -130,8 +102,8 @@ def check_gpu_availability():
|
|
130 |
|
131 |
check_gpu_availability()
|
132 |
|
133 |
-
|
134 |
-
def
|
135 |
text: str,
|
136 |
seed: int = 42,
|
137 |
width: int = 1024,
|
@@ -169,45 +141,6 @@ def generate_image_with_flux_old(
|
|
169 |
print("DEBUG: Image generated successfully.")
|
170 |
return image
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
@spaces.GPU()
|
175 |
-
def generate_image_with_flux(
|
176 |
-
text: str,
|
177 |
-
seed: int = 42,
|
178 |
-
width: int = 1024,
|
179 |
-
height: int = 1024,
|
180 |
-
num_inference_steps: int = 4,
|
181 |
-
randomize_seed: bool = True
|
182 |
-
):
|
183 |
-
print(f"DEBUG: Generating image with FLUX for text: '{text}'")
|
184 |
-
|
185 |
-
if randomize_seed:
|
186 |
-
seed = random.randint(0, MAX_SEED)
|
187 |
-
|
188 |
-
generator = torch.Generator().manual_seed(seed)
|
189 |
-
|
190 |
-
# Load FLUX pipeline only when needed
|
191 |
-
global flux_pipe
|
192 |
-
if flux_pipe is None:
|
193 |
-
flux_pipe = get_flux_pipeline() # Delayed initialization
|
194 |
-
|
195 |
-
if flux_pipe is None:
|
196 |
-
raise RuntimeError("FLUX pipeline is not available. Check CUDA or environment settings.")
|
197 |
-
|
198 |
-
image = flux_pipe(
|
199 |
-
prompt=text,
|
200 |
-
width=width,
|
201 |
-
height=height,
|
202 |
-
num_inference_steps=num_inference_steps,
|
203 |
-
generator=generator,
|
204 |
-
guidance_scale=0.0
|
205 |
-
).images[0]
|
206 |
-
|
207 |
-
print("DEBUG: Image generated successfully.")
|
208 |
-
return image
|
209 |
-
|
210 |
-
|
211 |
# --------- End of MinDalle Functions ---------
|
212 |
# Merge audio files
|
213 |
|
@@ -451,6 +384,4 @@ with demo:
|
|
451 |
)
|
452 |
|
453 |
# Launch the Gradio app
|
454 |
-
|
455 |
-
|
456 |
-
demo.launch(debug=True, share="SPACE_ID" in os.environ)
|
|
|
34 |
from pydub import AudioSegment
|
35 |
import textwrap
|
36 |
|
|
|
37 |
# Initialize FLUX pipeline only if CUDA is available
|
38 |
dtype = torch.bfloat16
|
39 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
|
41 |
+
if device == "cuda":
|
42 |
+
flux_pipe = DiffusionPipeline.from_pretrained(
|
43 |
+
"black-forest-labs/FLUX.1-schnell",
|
44 |
+
torch_dtype=dtype
|
45 |
+
).to(device)
|
46 |
+
else:
|
47 |
+
flux_pipe = None # Avoid initializing the model when CUDA is unavailable
|
|
|
|
|
|
|
48 |
|
49 |
MAX_SEED = np.iinfo(np.int32).max
|
50 |
MAX_IMAGE_SIZE = 2048
|
51 |
|
52 |
nltk.download('punkt')
|
53 |
|
|
|
54 |
# Ensure proper multiprocessing start method
|
55 |
+
multiprocessing.set_start_method("spawn", force=True)
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# Download necessary NLTK data
|
58 |
def setup_nltk():
|
|
|
70 |
TITLE = "Video Story Generator with Audio by using FLUX, distilbart, and GTTS."
|
71 |
|
72 |
# Load Tokenizer and Model for Text Summarization
|
73 |
+
def load_text_summarization_model():
|
74 |
"""Load the tokenizer and model for text summarization."""
|
75 |
print("Loading text summarization model...")
|
76 |
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
|
|
80 |
model.to(device)
|
81 |
return tokenizer, model, device
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
tokenizer, model, device = load_text_summarization_model()
|
84 |
|
85 |
# Log GPU Memory (optional, for debugging)
|
|
|
102 |
|
103 |
check_gpu_availability()
|
104 |
|
105 |
+
@spaces.GPU()
|
106 |
+
def generate_image_with_flux(
|
107 |
text: str,
|
108 |
seed: int = 42,
|
109 |
width: int = 1024,
|
|
|
141 |
print("DEBUG: Image generated successfully.")
|
142 |
return image
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
# --------- End of MinDalle Functions ---------
|
145 |
# Merge audio files
|
146 |
|
|
|
384 |
)
|
385 |
|
386 |
# Launch the Gradio app
|
387 |
+
demo.launch(debug=True, share=False)
|
|
|
|