Spaces:
Sleeping
Sleeping
Fix input and thread with gradio.
Browse files
app.py
CHANGED
|
@@ -1,32 +1,16 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
import socket
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
except ImportError as e:
|
| 8 |
-
st.error(f"ImportError: {e}")
|
| 9 |
-
st.stop()
|
| 10 |
-
except Exception as e:
|
| 11 |
-
st.error(f"Unexpected error: {e}")
|
| 12 |
-
st.stop()
|
| 13 |
-
|
| 14 |
-
# Specify the model name explicitly to avoid warnings
|
| 15 |
-
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 16 |
-
|
| 17 |
-
try:
|
| 18 |
-
classifier = pipeline('sentiment-analysis', model=model_name)
|
| 19 |
-
except Exception as e:
|
| 20 |
-
st.error(f"Error loading pipeline: {e}")
|
| 21 |
-
st.stop()
|
| 22 |
|
| 23 |
# Function to classify sentiment
|
| 24 |
def classify_text(text):
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
return f"{result['label']} with score {result['score']}"
|
| 28 |
-
except Exception as e:
|
| 29 |
-
return f"Error classifying text: {e}"
|
| 30 |
|
| 31 |
# Function to find an available port
|
| 32 |
def find_free_port():
|
|
@@ -34,13 +18,23 @@ def find_free_port():
|
|
| 34 |
s.bind(('', 0))
|
| 35 |
return s.getsockname()[1]
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
iface.launch(server_port=port)
|
| 43 |
|
| 44 |
# Streamlit code
|
| 45 |
st.title('IMDb Sentiment Analysis')
|
| 46 |
st.write('This project performs sentiment analysis on IMDb movie reviews using Streamlit.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
import streamlit as st
|
| 4 |
import socket
|
| 5 |
+
import threading
|
| 6 |
|
| 7 |
+
# Load the pre-trained sentiment-analysis pipeline
|
| 8 |
+
classifier = pipeline('sentiment-analysis')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Function to classify sentiment
|
| 11 |
def classify_text(text):
|
| 12 |
+
result = classifier(text)[0]
|
| 13 |
+
return f"{result['label']} with score {result['score']}"
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Function to find an available port
|
| 16 |
def find_free_port():
|
|
|
|
| 18 |
s.bind(('', 0))
|
| 19 |
return s.getsockname()[1]
|
| 20 |
|
| 21 |
+
# Function to run Gradio in a separate thread
|
| 22 |
+
def run_gradio():
|
| 23 |
+
iface = gr.Interface(fn=classify_text, inputs="text", outputs="text")
|
| 24 |
+
iface.launch(server_port=find_free_port())
|
| 25 |
|
| 26 |
+
# Start Gradio in a separate thread
|
| 27 |
+
threading.Thread(target=run_gradio).start()
|
|
|
|
| 28 |
|
| 29 |
# Streamlit code
|
| 30 |
st.title('IMDb Sentiment Analysis')
|
| 31 |
st.write('This project performs sentiment analysis on IMDb movie reviews using Streamlit.')
|
| 32 |
+
|
| 33 |
+
st.text_input("Enter text for sentiment analysis", key="input_text")
|
| 34 |
+
if st.button("Classify"):
|
| 35 |
+
text = st.session_state.input_text
|
| 36 |
+
if text:
|
| 37 |
+
result = classify_text(text)
|
| 38 |
+
st.write(result)
|
| 39 |
+
else:
|
| 40 |
+
st.write("Please enter text for classification.")
|