import gradio as gr from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Check if GPU is available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the IMDb dataset dataset = load_dataset('imdb', split='test[:1%]') # Load a small portion for testing # Initialize the tokenizer and model tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=2) model.to(device) # Function to classify sentiment def classify_text(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) outputs = model(**inputs) prediction = torch.argmax(outputs.logits, dim=-1).item() return "Positive" if prediction == 1 else "Negative" # Set up the Gradio interface iface = gr.Interface(fn=classify_text, inputs="text", outputs="text") iface.launch()