rynmurdock's picture
other tiger
fac61f6
raw
history blame
5.93 kB
import torch
from PIL import Image
import random
import logging
import torchvision
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=8, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, pil_image=None, input_size=224,):
if not pil_image:
pil_image = Image.open(image_file)
image = pil_image.convert('RGB')
transform = build_transform(input_size=input_size)
# images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in [image]]
pixel_values = torch.stack(pixel_values)
return pixel_values
def my_collate(batch):
try:
targets = torch.stack([s['target'] for s in batch])
samples = torch.stack([s['samples'] for s in batch])
# targets = torch.stack([s['target'] for s in batch if s is not None])
# samples = torch.stack([s['samples'] for s in batch if s is not None])
except Exception as e:
logging.warning('my_collate issue ', e)
return None
return samples, targets
class ImageFolderSample(torchvision.datasets.ImageFolder):
def __init__(self, data_path, k, processor):
super().__init__(data_path)
self.k = k
self.processor = processor
def safe_getitem(self, index):
try:
target_path, class_type = self.samples[index]
target = torch.from_numpy(self.processor(self.loader(target_path)).data['pixel_values'][0])
input_paths = random.choices([p[0] for p in self.samples if p != target_path and class_type in p], k=self.k)
assert len(input_paths) == self.k # I think it may do this by default...
samples = torch.stack([torch.from_numpy(self.processor(self.loader(i)).data['pixel_values'][0]) for i in input_paths])
except Exception as e:
logging.warning('getitem issue ', e)
samples, target = None, None
drop_mask = torch.rand(samples.shape[0],) < .2
samples[drop_mask] = 0
drop_whole_set_mask = torch.rand(1,) < .1
if drop_whole_set_mask:
samples = torch.zeros_like(samples)
return {'samples': samples[:, :3], 'target': target[:3]}
def __getitem__(self, index: int):
return self.safe_getitem(index)
# https://data.mendeley.com/datasets/fs4k2zc5j5/3
# Gomez, J. C., Ibarra-Manzano, M. A., & Almanza-Ojeda, D. L. (2017). User Identification in Pinterest Through the Refinement of Cascade Fusion of Text and Images. Research in Computing Science, 144, 41-52.
def get_dataset(data_path, processor):
return ImageFolderSample(data_path, 8, processor)
def get_dataloader(data_path, batch_size, num_workers, processor):
dataloader = torch.utils.data.DataLoader(
get_dataset(data_path, processor=processor),
num_workers=num_workers,
collate_fn=my_collate,
batch_size=batch_size,
shuffle=True,
drop_last=True
)
return dataloader