Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import pipeline | |
demo = gr.Blocks() | |
pipe = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-english") | |
pipe2 = pipeline("summarization", model="facebook/bart-large-cnn") | |
def launch(input): | |
out = pipe(input) | |
out2 = pipe2(out) | |
return out2[0]['summarized notes'] | |
def transcribe_long_form(filepath): | |
if filepath is None: | |
gr.Warning("No audio found, please retry.") | |
return "" | |
output = asr( | |
filepath, | |
max_new_tokens=256, | |
chunk_length_s=30, | |
batch_size=8, | |
) | |
return output["text"] | |
mic_transcribe = gr.Interface( | |
fn=transcribe_long_form, | |
inputs=gr.Audio(sources="microphone", | |
type="filepath"), | |
outputs=gr.Textbox(label="Transcription", | |
lines=3), | |
allow_flagging="never") | |
file_transcribe = gr.Interface( | |
fn=transcribe_long_form, | |
inputs=gr.Audio(sources="upload", | |
type="filepath"), | |
outputs=gr.Textbox(label="Transcription", | |
lines=3), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface( | |
[mic_transcribe, | |
file_transcribe], | |
["Transcribe Microphone", | |
"Transcribe Audio File"], | |
) | |
demo.launch(share=True, | |
server_port=int(os.environ['PORT1'])) |