Create importing
Browse files
importing
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import hf_hub_download
|
| 2 |
+
import fasttext
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
# 모델 다운로드
|
| 6 |
+
model_path = hf_hub_download(repo_id="cis-lmu/glotlid", filename="model.bin")
|
| 7 |
+
|
| 8 |
+
# 모델 로드
|
| 9 |
+
model = fasttext.load_model(model_path)
|
| 10 |
+
|
| 11 |
+
# 예측 함수
|
| 12 |
+
def predict_language(text):
|
| 13 |
+
predictions = model.predict(text)
|
| 14 |
+
return {
|
| 15 |
+
"Predicted language": predictions[0][0],
|
| 16 |
+
"Confidence score": predictions[1][0]
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
# Gradio 인터페이스
|
| 20 |
+
interface = gr.Interface(
|
| 21 |
+
fn=predict_language,
|
| 22 |
+
inputs=gr.Textbox(label="Input Text"),
|
| 23 |
+
outputs="json",
|
| 24 |
+
title="Language Predictor"
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
interface.launch()
|