Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
6 |
+
tokenizer = GPT2Tokenizer.from_pretrained("s3nh/DialoGPT-large-rick")
|
7 |
+
model = GPT2LMHeadModel.from_pretrained("s3nh/DialoGPT-large-rick")
|
8 |
+
model.eval()
|
9 |
+
|
10 |
+
def chat(message, history):
|
11 |
+
history = history or []
|
12 |
+
new_user_input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors='pt')
|
13 |
+
|
14 |
+
if len(history) > 0 and len(history) < 2:
|
15 |
+
for i in range(0,len(history)):
|
16 |
+
encoded_message = tokenizer.encode(history[i][0] + tokenizer.eos_token, return_tensors='pt')
|
17 |
+
encoded_response = tokenizer.encode(history[i][1] + tokenizer.eos_token, return_tensors='pt')
|
18 |
+
if i == 0:
|
19 |
+
chat_history_ids = encoded_message
|
20 |
+
chat_history_ids = torch.cat([chat_history_ids,encoded_response], dim=-1)
|
21 |
+
else:
|
22 |
+
chat_history_ids = torch.cat([chat_history_ids,encoded_message], dim=-1)
|
23 |
+
chat_history_ids = torch.cat([chat_history_ids,encoded_response], dim=-1)
|
24 |
+
|
25 |
+
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1)
|
26 |
+
|
27 |
+
elif len(history) >= 2:
|
28 |
+
for i in range(len(history)-1, len(history)):
|
29 |
+
encoded_message = tokenizer.encode(history[i][0] + tokenizer.eos_token, return_tensors='pt')
|
30 |
+
encoded_response = tokenizer.encode(history[i][1] + tokenizer.eos_token, return_tensors='pt')
|
31 |
+
if i == (len(history)-1):
|
32 |
+
chat_history_ids = encoded_message
|
33 |
+
chat_history_ids = torch.cat([chat_history_ids,encoded_response], dim=-1)
|
34 |
+
else:
|
35 |
+
chat_history_ids = torch.cat([chat_history_ids,encoded_message], dim=-1)
|
36 |
+
chat_history_ids = torch.cat([chat_history_ids,encoded_response], dim=-1)
|
37 |
+
|
38 |
+
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1)
|
39 |
+
|
40 |
+
elif len(history) == 0:
|
41 |
+
bot_input_ids = new_user_input_ids
|
42 |
+
|
43 |
+
chat_history_ids = model.generate(bot_input_ids, max_length=1000, do_sample=True, top_p=0.9, temperature=0.8, pad_token_id=tokenizer.eos_token_id)
|
44 |
+
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
45 |
+
|
46 |
+
history.append((message, response))
|
47 |
+
|
48 |
+
return history, history
|
49 |
+
|
50 |
+
title = "DialoGPT fine-tuned on DailyDialog"
|
51 |
+
description = "Rick and Morty DialoGPT fine tuned model "
|
52 |
+
iface = gr.Interface(
|
53 |
+
chat,
|
54 |
+
["text", "state"],
|
55 |
+
["chatbot", "state"],
|
56 |
+
allow_screenshot=False,
|
57 |
+
allow_flagging="never",
|
58 |
+
title=title,
|
59 |
+
description=description
|
60 |
+
)
|
61 |
+
iface.launch(debug=True)
|