saadfarhad's picture
Update app.py
deb3cb9 verified
raw
history blame
1.78 kB
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModelForCausalLM
# Load the processor and model, trusting the remote code for custom implementations
processor = AutoProcessor.from_pretrained(
"lmms-lab/LLaVA-Video-7B-Qwen2",
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
"lmms-lab/LLaVA-Video-7B-Qwen2",
trust_remote_code=True
)
# Set the device (use GPU if available)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def analyze_video(video_path):
"""
Analyzes a concert/event video to determine the moment when the crowd is most engaged.
"""
# Define the prompt instructing the model on what to do
prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged."
# Process the video and prompt
inputs = processor(text=prompt, video=video_path, return_tensors="pt")
# Move all tensor inputs to the selected device
inputs = {key: value.to(device) for key, value in inputs.items()}
# Generate the model's response
outputs = model.generate(**inputs, max_new_tokens=100)
# Decode the generated tokens to a human-readable string
answer = processor.decode(outputs[0], skip_special_tokens=True)
return answer
# Create the Gradio Interface
iface = gr.Interface(
fn=analyze_video,
inputs=gr.Video(label="Upload Concert/Event Video", type="filepath"),
outputs=gr.Textbox(label="Engagement Analysis"),
title="Crowd Engagement Analyzer",
description=(
"Upload a video of a concert or event and the model will analyze "
"the video to identify the moment when the crowd is most engaged."
)
)
if __name__ == "__main__":
iface.launch()