Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,49 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoProcessor
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
|
|
|
|
6 |
processor = AutoProcessor.from_pretrained(
|
7 |
"lmms-lab/LLaVA-Video-7B-Qwen2",
|
8 |
trust_remote_code=True
|
9 |
)
|
10 |
-
model =
|
11 |
"lmms-lab/LLaVA-Video-7B-Qwen2",
|
12 |
trust_remote_code=True
|
13 |
)
|
14 |
|
15 |
-
# Set
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
model.to(device)
|
18 |
|
19 |
def analyze_video(video_path):
|
20 |
"""
|
21 |
-
|
|
|
|
|
22 |
"""
|
23 |
-
# Define the prompt instructing the model on what to do
|
24 |
prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged."
|
25 |
|
26 |
-
# Process the
|
|
|
27 |
inputs = processor(text=prompt, video=video_path, return_tensors="pt")
|
28 |
|
29 |
-
# Move
|
30 |
inputs = {key: value.to(device) for key, value in inputs.items()}
|
31 |
|
32 |
-
# Generate
|
33 |
outputs = model.generate(**inputs, max_new_tokens=100)
|
34 |
|
35 |
-
# Decode the generated tokens to a
|
36 |
answer = processor.decode(outputs[0], skip_special_tokens=True)
|
37 |
return answer
|
38 |
|
39 |
-
# Create the Gradio
|
40 |
iface = gr.Interface(
|
41 |
fn=analyze_video,
|
42 |
inputs=gr.Video(label="Upload Concert/Event Video", type="filepath"),
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoProcessor
|
4 |
|
5 |
+
# Import the custom model class directly from the remote code.
|
6 |
+
# Note: The import path here is based on the repository structure. If this fails,
|
7 |
+
# check the model repository's files to confirm the correct import path and class name.
|
8 |
+
from transformers.models.llava.modeling_llava import LlavaForCausalLM
|
9 |
+
|
10 |
+
# Load the processor and model while trusting remote code.
|
11 |
processor = AutoProcessor.from_pretrained(
|
12 |
"lmms-lab/LLaVA-Video-7B-Qwen2",
|
13 |
trust_remote_code=True
|
14 |
)
|
15 |
+
model = LlavaForCausalLM.from_pretrained(
|
16 |
"lmms-lab/LLaVA-Video-7B-Qwen2",
|
17 |
trust_remote_code=True
|
18 |
)
|
19 |
|
20 |
+
# Set device to GPU if available.
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
model.to(device)
|
23 |
|
24 |
def analyze_video(video_path):
|
25 |
"""
|
26 |
+
This function accepts the path to a video file,
|
27 |
+
then uses the LLaVA-Video model to analyze it for the moment
|
28 |
+
when the crowd is most engaged.
|
29 |
"""
|
|
|
30 |
prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged."
|
31 |
|
32 |
+
# Process the text and video input.
|
33 |
+
# (Make sure that the processor handles video inputs as expected.)
|
34 |
inputs = processor(text=prompt, video=video_path, return_tensors="pt")
|
35 |
|
36 |
+
# Move tensors to the device.
|
37 |
inputs = {key: value.to(device) for key, value in inputs.items()}
|
38 |
|
39 |
+
# Generate a response.
|
40 |
outputs = model.generate(**inputs, max_new_tokens=100)
|
41 |
|
42 |
+
# Decode the generated tokens to a string.
|
43 |
answer = processor.decode(outputs[0], skip_special_tokens=True)
|
44 |
return answer
|
45 |
|
46 |
+
# Create the Gradio interface.
|
47 |
iface = gr.Interface(
|
48 |
fn=analyze_video,
|
49 |
inputs=gr.Video(label="Upload Concert/Event Video", type="filepath"),
|