import gradio as gr import torch from transformers import AutoProcessor, AutoModelForCausalLM # Load the processor and model from Hugging Face processor = AutoProcessor.from_pretrained("lmms-lab/LLaVA-Video-7B-Qwen2") model = AutoModelForCausalLM.from_pretrained("lmms-lab/LLaVA-Video-7B-Qwen2") # Set the device (use GPU if available) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def analyze_video(video_path): """ This function accepts the path to a video file, then uses the LLaVA-Video-7B-Qwen2 model to analyze the video. The prompt instructs the model to analyze the video and return the moment when the crowd is most engaged. """ # Define the prompt for the model prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged." # Process the video and prompt. # Note: The processor is expected to handle the video input (e.g., by reading frames). inputs = processor(text=prompt, video=video_path, return_tensors="pt") # Move all tensor inputs to the selected device inputs = {key: value.to(device) for key, value in inputs.items()} # Generate the model's response outputs = model.generate(**inputs, max_new_tokens=100) # Decode the generated tokens to a human-readable string answer = processor.decode(outputs[0], skip_special_tokens=True) return answer # Create the Gradio Interface iface = gr.Interface( fn=analyze_video, inputs=gr.Video(label="Upload Concert/Event Video", type="filepath"), outputs=gr.Textbox(label="Engagement Analysis"), title="Crowd Engagement Analyzer", description=( "Upload a video of a concert or event and the model will analyze " "the video to identify the moment when the crowd is most engaged." ) ) if __name__ == "__main__": iface.launch()