import gradio as gr import torch from transformers import AutoConfig, AutoProcessor, AutoModelForCausalLM # === Diagnostic Code Start === # Load the configuration with remote code enabled config = AutoConfig.from_pretrained("lmms-lab/LLaVA-Video-7B-Qwen2", trust_remote_code=True) print("Configuration type:", type(config)) print("Configuration architectures:", config.architectures) # === Diagnostic Code End === # Load processor and model with remote code enabled. processor = AutoProcessor.from_pretrained( "lmms-lab/LLaVA-Video-7B-Qwen2", trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( "lmms-lab/LLaVA-Video-7B-Qwen2", trust_remote_code=True ) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def analyze_video(video_path): prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged." inputs = processor(text=prompt, video=video_path, return_tensors="pt") inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate(**inputs, max_new_tokens=100) answer = processor.decode(outputs[0], skip_special_tokens=True) return answer iface = gr.Interface( fn=analyze_video, inputs=gr.Video(label="Upload Concert/Event Video", type="filepath"), outputs=gr.Textbox(label="Engagement Analysis"), title="Crowd Engagement Analyzer", description="Upload a video of a concert or event and the model will analyze the moment when the crowd is most engaged." ) if __name__ == "__main__": iface.launch()